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Molecular and network-level mechanisms 
explaining individual differences in autism 
spectrum disorder

Amanda M. Buch    1, Petra E. Vértes    2, Jakob Seidlitz    3,4, So Hyun Kim1,5,6, 
Logan Grosenick    1   & Conor Liston    1 

The mechanisms underlying phenotypic heterogeneity in autism spectrum 
disorder (ASD) are not well understood. Using a large neuroimaging 
dataset, we identified three latent dimensions of functional brain network 
connectivity that predicted individual differences in ASD behaviors and 
were stable in cross-validation. Clustering along these three dimensions 
revealed four reproducible ASD subgroups with distinct functional 
connectivity alterations in ASD-related networks and clinical symptom 
profiles that were reproducible in an independent sample. By integrating 
neuroimaging data with normative gene expression data from two 
independent transcriptomic atlases, we found that within each subgroup, 
ASD-related functional connectivity was explained by regional differences 
in the expression of distinct ASD-related gene sets. These gene sets were 
differentially associated with distinct molecular signaling pathways 
involving immune and synapse function, G-protein-coupled receptor 
signaling, protein synthesis and other processes. Collectively, our findings 
delineate atypical connectivity patterns underlying different forms of ASD 
that implicate distinct molecular signaling mechanisms.

Individuals with ASD present with a range of difficulties in social interac-
tion and communication, repetitive and ritualistic behaviors, differing 
levels of intellectual disability and various medical comorbidities. 
ASD is not a unitary entity. Distinct pathophysiological processes may 
underlie different forms of ASD and benefit from different types of 
therapeutic interventions1–4. Phenotypic heterogeneity is thus a major 
obstacle to defining pathophysiological mechanisms and discovering 
new therapeutic approaches.

Functional magnetic resonance imaging (fMRI) studies have  
found that impaired social cognition and language processing in  
ASD are associated with atypical activity in the thalamus, visual  
areas and salience network5–7, and that repetitive and ritualistic 

behaviors are associated with atypical inhibitory control and fronto
striatal circuit function8,9. Large-scale, multi-site resting-state fMRI 
(rsfMRI) datasets have identified—at the group level—robust and  
reproducible differences in functional connectivity in corticostriatal  
and frontoparietal networks in ASD10,11. More recently, neuroima
ging studies have investigated the neurobiological basis of pheno
typic heterogeneity in ASD, showing that anatomically defined  
subgroups can improve the prediction of ASD symptom severity;  
that functional connectivity differentiates individuals with ASD  
from neurotypical controls; and that multiple functional connecti
vity patterns are found in different subsets of individuals with  
ASD12–14. Still, whether and how atypical connectivity contributes  
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(Fig. 1d–f). The first dimension predicted individual differences in 
verbal IQ and was modestly anticorrelated with social affect and RRB 
symptoms, as measured by ADOS-2 CSS (Fig. 1d). The second dimension 
predicted individual differences in the social affect CSS (Fig. 1e). The 
third dimension was strongly correlated with individual differences 
in RRB symptoms and moderately correlated with verbal IQ (Fig. 1f). 
Canonical correlations in the cross-validation test set were statistically 
significant for all three brain–behavior dimensions (Supplementary Fig. 
3a–c; 1: r = 0.269, P < 0.0001, d = 1.119; 2: r = 0.180, P = 0.0005, d = 0.771; 
and 3: r = 0.115, P = 0.0185, d = 0.484), based on a corrected (and con-
servative) variance estimator that accounts for correlations between 
replicates37. Although all three canonical correlations were significant 
in held-out data, the higher canonical correlations in the training set 
relative to the test set unsurprisingly indicate some overfitting (a com-
mon finding during cross-validation38) and suggest there could still be 
room for further improvement on held-out test data with, for example, 
more complex regularization procedures.

To better understand how atypical functional connectivity in 
specific regions and networks underlies individual differences in ASD 
symptoms, we first examined the RSFC correlates (connectivity score 
loadings) of each latent brain–behavior dimension. We found that 
each brain–behavior dimension described a distinct pattern of func-
tional connectivity (Fig. 2a–c and Extended Data Fig. 1). Specifically, 
we found that the verbal IQ-related dimension was associated with 
connectivity between brain areas known to be important for language 
processing and reading ability, including corticothalamic, visual net-
work and striatal connectivity (Fig. 2a), which is consistent with previ-
ous work indicating that reading ability is negatively associated with 
thalamic synchronization39 and functional connectivity involving 
these areas6,40,41. The social affect-related dimension was associated 
with connectivity between brain areas known to be important for 
socio-emotional processing, including connectivity between the sali-
ence network, visual network and striatal areas (Fig. 2b). These results 
are consistent with previous studies showing that the salience network 
is hyperactive at rest in ASD42; that salience network connectivity is 
associated with sensory over-responsivity to irrelevant stimuli and 
social interaction deficits7; and that corticostriatal hyperconnectiv-
ity is a commonly replicated feature of ASD43,44 and may contribute to 
abnormal gating of socially relevant stimuli45. The RRB-related dimen-
sion was associated with connectivity between brain areas known to be 
important for cognitive control, response inhibition and action selec-
tion, including corticostriatal connectivity with primary motor areas 
and the frontoparietal task control network (Fig. 2c). These results 
are consistent with previous work that shows association of severe 
RRB symptoms with corticostriatal, frontoparietal and motor cortex 
connectivity8,46,47 and RRBs with executive function48. Moreover, these 
three brain–behavior dimensions were robust and stable when calcu-
lated in different subsets of participants with ASD (Supplementary 
Figs. 3 and 4). Further, we replicated key brain–behavior association 
findings in a subset of the data comprising a narrower age range (ages 
8–18) and in a second brain parcellation49 (Supplementary Figs. 5 and 6). 
Together, these results delineate distinct sets of functional connectivity 
features that explain individual differences in verbal IQ, social affect 
and RRB symptoms and align with convergent findings from previous 
studies, enhancing confidence in the results.

To better understand the extent to which RSFC features in dis-
tinct versus overlapping brain networks were associated with indi-
vidual differences in verbal IQ, social affect and RRB symptoms, we 
tested for overlap between the most important RSFC features in each 
latent brain–behavior dimension. We found that 1,313 RSFC features  
correlated with symptom scores in at least one dimension (false  
discovery rate (FDR)-corrected P < 0.05), and most were specific to  
one dimension, such that only ten features (representing just  
0.03% of all RSFC features brain wide) associated with more than one 
dimension (Fig. 2f).

to individual differences in symptoms and behaviors in ASD is not  
well understood.

Family exome sequencing studies have estimated over 1,000 
genetic variants confer risk for ASD with varying penetrance15–18, and 
large-scale genome-wide association studies have identified over 
500 common variants19,20 associated with a wide range of biological 
properties. In most cases, risk for ASD is thought to be influenced by 
the cumulative impact of many common variants, which complicates 
efforts to model their role in brain function, development and behav-
ior. ASD has also been associated with transcriptional differences in 
specific brain regions21,22, and recent studies suggest that regional 
differences in gene expression may regulate network function in the 
healthy human brain23 as well as structural abnormalities in ASD and 
schizophrenia24–27. These observations led us to hypothesize that dis-
tinct genetic pathways may be important in subsets of individuals, 
and may confer risk for specific symptoms by modulating functional 
connectivity in ASD-related brain networks.

To test this hypothesis, we used regularized canonical correla-
tion analysis (RCCA) and resampling methods optimized to reduce 
overfitting and improve generalizability, and identified three latent 
brain–behavior dimensions explaining phenotypic heterogeneity in 
ASD in two large-scale rsfMRI datasets (Autism Brain Imaging Data 
Exchange (ABIDE) I and II)10,11. These three dimensions described pat-
terns of functional connectivity that predicted individual differences in  
(1) verbal ability, (2) social affect and (3) repetitive behavior and 
restricted interests, and were estimated in training samples and  
validated using held-out data. Hierarchical clustering along these 
three dimensions identified four distinct subgroups of individuals 
with ASD that were reproducible in held-out data and associated with 
differing patterns of functional connectivity and behavior. Finally, by 
integrating rsfMRI data with normative gene expression data from two 
transcriptomic brain atlases28,29, we found that regional differences in 
the expression of ASD-related genes predicted which networks exhib-
ited atypical connectivity in ASD and implicated distinct biological 
processes and molecular signaling mechanisms in each ASD subgroup.

Results
We began by testing whether functional connectivity in ASD-related 
brain networks explains individual differences in ASD symptoms in a 
large, extensively validated, and well-studied neuroimaging sample 
(ABIDE I and ABIDE II) comprising 432 individuals with ASD with verbal 
IQ and ADOS-2 calibrated severity scores (CSS) and 1,106 neurotypical 
controls from 36 research sites. Because head motion and other arti-
facts can confound analyses of multi-site neuroimaging datasets30,31, we 
implemented a stringent protocol for controlling for motion artifacts 
and data quality following or exceeding well-established guidelines32,33 
(Supplementary Fig. 1 and Methods). Using an extensively validated 
functional parcellation atlas34, we estimated whole-brain resting-state 
functional connectivity (RSFC) maps for each participant. After exclud-
ing data that did not meet our data quality inclusion criteria (~21.5%  
of participants; Methods), all subsequent analyses focused on a  
sample of 299 participants with ASD and 907 neurotypical controls.

Three brain–behavior dimensions explain individual 
differences in autism spectrum disorder
We used RCCA to identify latent brain–behavior dimensions explain-
ing individual differences in three ASD-related domains: social affect 
symptoms, restricted and repetitive behaviors (RRBs) and verbal IQ 
(Fig. 1a–c). To reduce overfitting35,36, we first used resampled feature 
selection (1,000 training sets subsampled on 95% of the data) to identify 
a subset of functional connectivity features that were reliably corre-
lated with one or more ASD behaviors. Next, we used cross-validated 
RCCA in 1,000 training set/test set replicates with test data (5%) held 
out from both feature selection and RCCA (Supplementary Fig. 2 and 
Methods). RCCA identified three latent brain–behavior dimensions 
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Finally, we examined whether individual differences in ASD 
symptoms were explained predominantly by RSFC features that were 
abnormal relative to neurotypical controls, or by variation in RSFC 
within the normal range50–52. ASD was associated with widespread 

connectivity abnormalities spanning a variety of cortical and sub
cortical regions (FDR-corrected P < 0.05; Fig. 2d and Extended Data 
Fig. 1d) and involving 4,433 RSFC features or ~14.6% of all RSFC features 
throughout the brain. Unexpectedly, only a small minority (13.4%) 

Brain-behavior dimensions

Connectivity score
Participant 1
Participant 2
Participant 3
Participant 4
Participant 5
Participant 6
Participant 7
Participant ...
Participant 299

Dimension 1

1 2 3

Dimension 2

Dimension 3

Behavior score
Participant 1
Participant 2
Participant 3
Participant 4
Participant 5
Participant 6
Participant 7
Participant ...
Participant 299

1 2 3

2. RRB
3. Verbal IQ

Original data

1. PFC-MTG

2. Cd-MOG

3. M1-CBL
...

350. PPC-S1

Brain–behavior dimensions

1. Social affect

Functional connectivity (RSFC)

ASD-related behaviors

Participant 1
Participant 2
Participant 3
Participant 4
Participant 5
Participant 6
Participant 7
Participant ...
Participant 299

Participant 1
Participant 2
Participant 3
Participant 4
Participant 5
Participant 6
Participant 7
Participant ...
Participant 299

Social
 af

fect
RRB

Verb
al 

IQ

... 3501 2 3 4 5 6 7 8 9
RSFC feature

Correlated spaceFeature space Dimensional analysis (RCCA)

a
Population

Participant 1

–2

–1

0

1

2

RSFC

Participant 2

Participant 3
0 50 100 150 200 250 300 350

–20

0

20

%
∆

 B
O

LD
%

∆
 B

O
LD

%
∆

 B
O

LD

Left precentral (M1)

Left cerebellum

0 50 100 150 200 250 300 350
–20

0

20

–40

Right lingual

0 50 100 150 200 250 300 350

–20
0

20

b

f

Limbic

DMN

FPTC

Salience

COTC
Somatomotor

Auditory

Visual

Cerebellum
Brainstem

Networkc

0

VIQ

RRB

SA

–2 0 2

Connectivity score (a.u.)

–3

–2

–1

0

1

2

C
lin

ic
al

 s
co

re
 (a

.u
.)

Verbal IQ-related

–0.36

–0.42

0.86

0.91

0.26

r = 0.269 
P < 0.0001
d = 1.119

VIQ

RRB

SA

ed

Time (s)

–2 0 2

Connectivity score (a.u.)

–3

–2

–1

0

1

2

Social affect-related

r = 0.180 
P = 0.0005
d = 0.771

C
lin

ic
al

 s
co

re
 (a

.u
.)

–2 0 2

–3

–2

–1

0

1

2
C

lin
ic

al
 s

co
re

 (a
.u

.)

RRB-related

SA

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1
r

Connectivity score (a.u.)

0

0.78

0.44

r = 0.115 
P = 0.0185
d = 0.484

VIQ

RRB

Fig. 1 | Three brain–behavior dimensions explain individual differences 
in autism spectrum disorder. a, Schematic summarizing stabilized feature 
selection and RCCA in N = 299 ASD participants and N = 907 neurotypical 
controls. b, Glass brain (left) depicting functional parcellation50 spanning the 
cerebrum, brainstem and cerebellum (colored by functional network). BOLD 
signal time series extracted from three representative ROIs (middle) and 
correlation between each ROI and every other ROI (functional connectivity 
matrix, right) for each participant. c, Glass brain depicting the neuroanatomical 
distribution of functional connectivity features that were correlated with one 
or more ASD behaviors, identified in one representative training set (colored by 
functional network, sized by correlation). d–f, RCCA revealed three dimensions 
predicting individual differences in verbal IQ (d), social affect (e) and RRB (f) 
symptoms. Scatterplots depict the association between connectivity scores 
and behavior scores for each RCCA dimension across participants. Mean scores 
calculated on held-out data are light, while the average scores calculated on 

the training set data are dark. Heat maps (left) depict the mean correlation 
over training sets between each dimension’s behavior scores and each clinical 
symptom (Fisher z-transformed Spearman correlation coefficients). The 
canonical correlations (r) for all three dimensions were statistically significant 
in held-out data (inset also shows Cohen’s d) compared to an empirical null 
distribution (shuffled held-out test set data; 1,000 shuffles in each of the 1,000 
training/test sets). (variate 1: r = 0.269, P < 0.0001, d = 1.119; variate 2: r = 0.180, 
P = 0.0005, d = 0.771; and variate 3: r = 0.115, P = 0.0185, d = 0.484; r indicates 
mean test set canonical correlation, P indicates P value, and d indicates Cohen’s 
d). a.u., arbitrary units; BOLD, blood-oxygen-level-dependent; CBL, cerebellum; 
Cd, caudate; COTC, cerebellar-occipital task control; DMN, default mode 
network; FPTC, frontoparietal task control; M1, primary motor cortex; MOG, 
medial orbital gyrus; MTG, middle temporal gyrus; PFC, prefrontal cortex; PPC, 
posterior parietal cortex; r, canonical correlation; RCCA, regularized canonical 
correlation; S1, primary somatosensory cortex; SA, social affect.
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of the most important symptom-predictive RSFC features were also 
atypical compared to controls (Fig. 2e). Results were highly similar 
when this analysis was restricted to age-matched controls (N = 868 
neurotypical controls aged 5–35 years; Supplementary Fig. 7). These 
results suggest that while some abnormal RSFC features are predic-
tors of symptoms, most are not; rather, individual differences in ASD 
symptoms are explained predominantly by variation in RSFC that 
falls within the normal range and is associated with ASD symptoms 
only when it co-occurs with a distinct set of abnormal RSFC features 
involving the default mode network (especially the middle temporal 
gyrus), thalamus, primary sensorimotor areas, brainstem (especially 
the dorsal raphe) and other regions.

Brain–behavior dimensions define four autism spectrum 
disorder subgroups
While numerous studies have identified consistent and reproducible 
patterns of atypical connectivity in ASD53,54, it is unclear whether dis-
tinct patterns of circuit dysfunction are operative in some subgroups 
of individuals with ASD but not in others. Having identified three 
brain–behavior dimensions explaining individual differences in ASD, we 
tested whether ASD individuals tended to cluster into relatively homo-
geneous subgroups in this three-dimensional space. Hierarchical clus-
tering along these three dimensions identified an optimal four-cluster 
solution (Fig. 3a), based on three in-sample and three out-of-sample 
assessments of the goodness of fit (Supplementary Figs. 8 and 9, 
Extended Data Fig. 2 and Methods). In a secondary exploratory analysis, 
we did not observe sex differences between clusters (Supplementary  
Fig. 8h); however, a limitation of this analysis is that only 15.4% of the 
ASD participants in the ABIDE ASD dataset were female (Nfemale = 46 
females of N = 299 ASD participant). In subsequent analyses, we used 
the participant’s modal cluster assignment as an ensemble estimate 
across 1,000 subsamples (Methods).

Next, we tested for differences in ASD symptoms and atypical func-
tional connectivity between the four subgroups and found subgroup 
differences in both domains. The four subgroups differed strongly 
with respect to their clinical symptom profiles (Fig. 3b–e). Each sub-
group was also associated with distinct patterns of atypical RSFC in 
ASD-related networks, especially limbic areas (subgroups 2 and 3), the 
default mode network (subgroup 4) and sensorimotor areas (subgroup 
1), among others (Extended Data Fig. 3). These results were stable when 
we evaluated the distribution of clinical symptoms in subgroups across 
1,000 subsamples (of 95% ASD participants; Extended Data Fig. 4a–d) 
and the mean and standard deviation of the atypical functional con-
nectivity across 1,000 subsamples (of 95% ASD participants; Extended 
Data Fig. 4e–l and Methods).

A closer pairwise comparison of the relationship between atypi-
cal connectivity, dimension-related connectivity and clinical symp-
tom profiles in specific subgroups revealed associations that suggest 

distinct network-level mechanisms underlying individual differences 
in each subgroup (Fig. 3b–h and Fig. 4). Subgroup 1 had above-average 
verbal IQ (Fig. 3d), high connectivity scores in the verbal IQ-related 
dimension 1 (Fig. 3f,g) and abnormally low RSFC in IQ-related lan-
guage processing areas compared to neurotypical controls (Fig. 4a). 
In contrast, subgroup 2 had below-average verbal IQ (Fig. 3d), low 
connectivity scores in the verbal IQ-related dimension 1 (Fig. 3f,g) and 
abnormally elevated RSFC in the same language processing areas, as 
well as multiple other connections that predict individual differences 
in verbal IQ (Fig. 4b)—a finding not observed in the other subgroups. 
These results show how abnormally elevated connectivity in verbal 
IQ-related networks is specific to a subgroup of ASD individuals, and 
suggest that in other ASD individuals, atypical connectivity in the 
opposite direction (abnormally reduced) might compensate for other 
abnormalities, preserving verbal IQ even in the presence of symptoms 
in other domains.

Similarly, subgroup 3 had high social affect symptoms (Fig. 3b), 
low RRB symptoms (Fig. 3c) and, compared to neurotypical controls, 
abnormally elevated connectivity associated with social affect-related 
dimension 2 (Fig. 4g), including anterior cingulate and ventrolat-
eral prefrontal areas of the salience network, among others. In con-
trast, subgroup 4 had low social affect symptoms (Fig. 3b), high RRB  
symptoms (Fig. 3c) and atypical connectivity in the same areas  
but in the opposite direction, with abnormally low connectivity  
associated with dimension 2 (Fig. 4h). Comparing subgroup 3 (low 
RRB symptoms, hyperconnectivity between cognitive control areas, 
the striatum and primary motor cortex; Fig. 4k) and subgroup 1  
(high RRB symptoms, abnormally low connectivity in the same  
areas; Fig. 4i) also revealed potentially compensatory connectivity  
differences associated with reduced RRB symptoms. Together, 
these results define four ASD subgroups along three brain–behavior  
dimensions that differed with respect to both ASD symptom pro-
files and functional network organization. They are also consistent  
with the hypothesis that varying and contrasting connectivity  
patterns may contribute to clinical heterogeneity in ASD, and that 
similar ASD symptoms may be associated with distinct network- 
level substrates.

For comparison, we clustered directly on the standardized clinical 
symptom scores (z-score of scale value; that is, hierarchical clustering 
using cosine distance with average linkage and splitting the resulting 
dendrogram at four clusters as in Fig. 3, but on clinical symptoms only). 
We found that N = 226 of the N = 299 ABIDE participants (75.6%) were 
assigned to the same clusters as those found using brain functional 
connectivity (connectivity scores; Supplementary Fig. 10). We interpret 
this result as indicating that the clustering results share some similarity; 
however, clustering on the brain–behavior dimensions incorporates 
additional information that importantly influences the final clustering 
assignments.

Fig. 2 | Functional connectivity correlates of autism spectrum disorder 
symptoms. a, Mean correlation between RSFC features and behavior scores 
for verbal IQ-related dimension (on cross-validation (CV) training folds). Heat 
map (left) labeled by brain region (x axis) and RSFC network (y axis), showing 
a subset of RSFC features with strong loadings for dimension (maximum 
RSFC-to-dimension correlation; FDR < 0.05; 247 ROIs mapped to 37 brain 
regions, collapsed over hemispheres). Chord plot (middle) depicts connectivity 
score correlations for the most important RSFC features (>1 connection with 
FDR < 0.001). Glass brain (right) depicts neuroanatomical distribution of  
RSFC features in chord plot. b, Mean correlation between RSFC features and 
behavior scores for social affect-related dimension (on CV training folds).  
c, Mean correlation between RSFC features and behavior scores for RRB-related 
dimension (on CV training folds). d, Heat map of atypical connectivity in N = 299 
individuals with ASD compared to N = 907 neurotypical controls (two-sided 
Welch’s t-test; FDR < 0.001), showing maximum atypical connectivity statistic 
between ROIs within each of the 37 brain region groups. See Extended Data Fig. 1 

for whole-brain (247 × 247 ROIs) results. e, Venn diagram indicating the number 
of RSFC features (of 247 × 247) correlated with dimensions in a–c but not atypical 
(yellow; nRSFC = 1,137; FDR < 0.05) and number of RSFC features not correlated 
with any dimension but atypical (green; nRSFC = 4,257; FDR < 0.05). Only 13.4% 
of symptom-predictive RSFC features (overlap; nRSFC = 176 of 1,313; FDR < 0.05) 
were also atypical. f, Venn diagram indicating number of RSFC features (of 
247 × 247) significantly (FDR < 0.05) correlated with each dimension. Each RSFC 
dimension score was associated with a mostly unique set of RSFC features. 
ACC, anterior cingulate cortex; antPFC, anterior prefrontal cortex; DLPFC, 
dorsolateral prefrontal cortex; IOG, inferior orbital gyrus; IPL, inferior parietal 
lobe; ITG, inferior temporal gyrus; MCC, medial cingulate cortex; NAcc, nucleus 
accumbens; OFC, orbital frontal cortex; paraHC, parahippocampus; PCC, 
posterior cingulate cortex; SM, somatomotor; SMA, supplementary motor area; 
STG, superior temporal gyrus; Temp Pole, temporal pole; VLPFC, ventrolateral 
prefrontal cortex; VMPFC, ventromedial prefrontal cortex.
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For further validation, we confirmed that connectivity scores by 
subgroup were not sensitive to small changes in the RCCA parameters 
and were stable (Supplementary Figs. 3, 4 and 11). Subgroup results 
were also consistent in a secondary analysis restricted to age-matched 

controls (N = 868 neurotypical controls aged 5–35 years; Supplemen-
tary Fig. 12). Next, we replicated key findings of ASD subgroups, first, in 
a narrower age-range sample (aged 8–18 years) and, second, in a second 
brain parcellation49 (Extended Data Figs. 5 and 6 and Supplementary 
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Figs. 13–16). Furthermore, we evaluated the impact of age on these ASD 
subgroups, and did not detect evidence of developmental heteroge-
neity within the brain–behavior associations of the ASD subgroups 
(Supplementary Figs. 17–20 and Supplementary Tables 1 and 2).

Finally, we tested whether the ASD subgroups defined in ABIDE 
were replicable in an independent, out-of-sample dataset from the 
National Institute of Mental Health (NIMH) Data Archive (NDA; N = 85 
ASD participants; Extended Data Fig. 7, Supplementary Fig. 21 and 
Methods). To summarize our approach, among a total of N = 113 par-
ticipants, NNDA = 85 participants (aged 8–39 years; 58 males, 27 females) 
had usable fMRI data according to the quality-control criteria used in 
this work. We repeated the analyses exactly as they were implemented 
in the ABIDE dataset, including feature selection, RCCA and cluster-
ing. Despite the relatively small sample size, we identified four ASD 
subgroups with behavioral profiles and atypical connectivity patterns  
that were strikingly similar to those observed in the ABIDE ASD  
subgroups (Extended Data Fig. 7 and Supplementary Fig. 21; NDA  
subgroup sizes were NNDA_1 = 20, NNDA_2 = 21; NNDA_3 = 27; NNDA_4 = 17).

Transcriptomic correlates of subgroup-specific connectivity
We next hypothesized that common ASD risk variants could modu-
late ASD pathophysiology by influencing resting-state connectivity 

in ASD-related brain networks and that distinct genetic pathways may 
be important in subsets of individuals. To test this hypothesis, we first 
investigated whether regional differences in normative gene expres-
sion patterns explain the spatial pattern of atypical connectivity in 
the four ASD subgroups identified in Figs. 3 and 4. We mapped norma-
tive regional gene expression profiles for 10,438 microarray probes in  
the Allen Human Brain Atlas (AHBA), including gene expression  
data for 3,702 samples from 6 healthy adults (N = 5 men, N = 1 woman, 
aged 24–57 years)28, to the functional parcellation used above  
(Fig. 1b), preprocessing the AHBA microarray expression dataset  
following best practices55 (Methods). Next, we used partial least  
squares (PLS) regression to test for weighted combinations of  
gene expression probes that covary with the spatial distribution  
of atypical RSFC (collapsed to regional seeds) in each ASD subgroup 
(Fig. 5a). PLS regression confirmed that regional differences in gene 
expression predicted the neuroanatomical distribution of atypical  
connectivity in all four subgroups, with statistical significance  
established in both a simple permutation test and a stricter, spatial 
permutation (‘spin’) test27,56 (Supplementary Table 3 and Methods). To 
determine the degree to which distinct gene sets were implicated across 
the four subgroups, we calculated the ranking similarity between the  
top 1,000 ranked gene weights of the subgroups using rank biased 
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Fig. 3 | Hierarchical clustering on brain–behavior dimension scores reveals 
four autism spectrum disorder subgroups. a, Heat map and dendrogram 
depict hierarchical clustering on all 299 ASD individuals (rows) along three 
dimensions (columns) using cosine similarity (dendrogram) between 
connectivity scores of ASD participant pairs (heat map; dashed line indicates 
80% of maximum cosine distance). b–e, Box plots of the distribution of clinical 
symptom z-scores (superimposed bar graphs depict the median) for social affect 
(SA) (b), RRB (c), verbal IQ (VIQ) (d) and total severity (e; N = 69, N = 87, N = 67 
and N = 76 ASD participants for subgroups 1–4, respectively; color indicates 
subgroup). All four measures—social affect, RRB, verbal IQ and total severity—
differed by subgroup (Kruskal–Wallis test between subgroups showed  
significant between-subgroup differences for each symptom: social affect,  

X2 (3, N = 299) = 115.86, P = 6.02 × 10−25; RRB: X2 (3, N = 299) = 124.52, P = 8.18 × 10−27; 
VIQ: X2 (3, N = 299) = 138.28, P = 8.88 × 10−30; total severity: X2 (3, N = 299) = 115.22, 
P = 8.25 × 10−25). Note that higher social affect, RRB and total severity scores and 
lower verbal IQ indicate greater impairment. f–h, Kernel density estimation plots 
of participant connectivity scores in two dimensions (lowest iso-proportion 
level = 0.25). Box plots indicate distributions of subgroup connectivity scores 
along a single dimension (N = 69, N = 87, N = 67 and N = 76 ASD participants for 
subgroups 1–4, respectively). For b–h, box bounds indicate the 25th and 75th 
percentiles; the center line denotes the median; whiskers correspond to ±2.7σ 
and 99.3% of the data; and outliers are shown as circles. Analyses for b–h use the 
aggregate clustering assignment described in the main text and Methods.
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overlap (RBO)57, a ranking similarity measure for non-conjoint lists. 
The RBO similarity scores indicated that different sets of gene candi-
dates were prioritized for each subgroup (RBO = 0.36–0.59; 1 is perfect 
similarity; Fig. 5b).

Next, we tested the prediction that ASD risk variants would be 
among the most important predictors of atypical RSFC in these gene 
sets, using weighted fast gene set enrichment analysis (fGSEA)58 to 
evaluate whether the subgroup gene weights were enriched for gene 
sets implicated in ASD. All four subgroup PLS models were enriched for 
multiple ASD-related gene sets (Fig. 5c). Of note, negatively weighted 
genes in the PLS models (anticorrelated with atypical RSFC) were 
enriched for genes transcriptionally downregulated in ASD, while 
positively weighted genes were enriched for genes upregulated in ASD 

(Fig. 5c), lending further support to a biologically meaningful associa-
tion between gene expression and atypical functional connectivity.

To establish the specificity of these findings, we also tested for 
enrichment of published gene sets associated with other disease pheno
types. Importantly, there was no enrichment for genes associated  
with multiple systems atrophy, dementia, heart disease or psoriasis, 
which were not expected to have genetic risk overlap with ASD (Fig. 5d). 
However, negatively weighted genes in subgroups 1 and 4—subgroups 
with relatively severe RRB symptoms—were enriched for genes asso
ciated with Tourette’s disorder and attention-deficit hyperactivity  
disorder (ADHD; Fig. 5e). Positively weighted genes in all four  
subgroups were enriched for immune-related diseases known to be 
comorbid with ASD59,60 (Fig. 5d). We also found that the gene sets for 
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Fig. 4 | Autism spectrum disorder subgroups have distinct atypical 
connectivity patterns in dimension-related RSFC features. a–l, Chord plots 
of atypical connectivity (two-sided Welch’s t-test between RSFC of participants 
with ASD in each subgroup (N = 69, N = 87, N = 67 and N = 76 ASD participants) and 
N = 907 neurotypical controls; FDR < 0.05) for the most important dimension-
related RSFC features identified in Fig. 2a–c. Blue boxes highlight findings 
discussed in the main text. a–d, Subgroup atypical connectivity in verbal  
IQ-related RSFC (dimension 1). e–h, Subgroup atypical connectivity in social 
affect-related RSFC (dimension 2); i–l, Subgroup atypical connectivity in 
RRB-related RSFC (dimension 3). b, Subgroup 2 had atypical connectivity 
associated with dimension 1, predicting lower verbal IQ. g, Subgroup 3 had 

atypical connectivity associated with dimension 2, predicting high social affect 
symptoms and low RRB symptoms. h, Subgroup 4 had atypical connectivity 
associated with dimension 2 but in the opposite direction, predicting low 
social affect symptoms and high RRB symptoms. i, Subgroup 1 had atypical 
connectivity associated with dimension 3, predicting high RRB symptoms 
and high verbal IQ. k, Subgroup 3 had atypical connectivity associated with 
dimension 3 but in the opposite direction, predicting low RRB symptoms. Color 
bars on the right indicate the direction of atypical connectivity and connection 
strength (warm indicates increased, while cool indicates decreased relative to 
neurotypical controls) and functional network (node color). Analyses use the 
aggregate clustering assignment described in the main text and Methods.
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Fig. 5 | Transcriptomic correlates of atypical connectivity patterns in autism 
spectrum disorder subgroups. a, Schematic of transcriptomics analysis to test 
whether gene expression explains atypical connectivity in each subgroup. First, 
we calculated gene expression at each brain region (ROI) and atypical connectivity 
(RSFC) summed over ROIs for each subgroup. Second, we performed PLS 
regression for each subgroup and estimated the significance of each PLS model 
using a spatial permutation (‘spin’) test27,56. The PLS models for all four subgroups 
were significant (subgroup 1: P = 0.014; subgroup 2: P < 0.001; subgroup 3: 
P < 0.001; subgroup 4: P < 0.001; all statistics in Supplementary Table 3). Third, we 
ranked genes by PLS gene weights in each model. b, Heat map of similarity between 
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subgroups 1, 3 and 4, which had average to above-average verbal IQ, 
were enriched for vocal learning-related genes61 (Fig. 5e). Together, 
these results indicate that regional differences in gene expres-
sion predict the spatial distribution of atypical connectivity in the  
four ASD subgroups identified in Figs. 3 and 4, and that these genes  
are enriched for ASD risk variants but not for genes associated with 
other unrelated disorders.

While the gene sets explaining atypical connectivity were enriched 
for ASD-related risk variants in all four subgroups, the results in Fig. 5b 
indicate that distinct combinations of these genes were important in 
different subgroups. To further understand whether distinct biologi-
cal pathways were implicated in each subgroup, we used fGSEA and 
Gene Ontology analysis to test for enrichment of genes associated 
with specific cellular components, molecular functions and biological 
processes62 as well as cell types (Fig. 5f–h, Supplementary Table 4 and 
Supplementary Figs. 22 and 23). Three patterns stood out. First, genes 
explaining atypical connectivity were enriched for synaptic signaling 
gene sets, but to differing degrees. Genes related to subgroup 2 connec-
tivity patterns were only enriched for 2 of the 11 synaptic signaling gene 
sets, while subgroups 1, 3 and 4 were enriched for 11, 8 and 11 of the 11 syn-
aptic signaling gene sets, respectively. Second, genes explaining atypi-
cal connectivity were also enriched for immune signaling gene sets, but 
again, to differing degrees. Genes related to subgroup 3 connectivity 
patterns were enriched for all 12 immune signaling gene sets, while 
subgroups 1, 2 and 4 were only enriched for 6, 8 and 6 of the immune 
signaling gene sets accordingly. This suggests that the well-established 
role of immune signaling in ASD63,64 may be more important in spe-
cific subgroups, at least with respect to their impact on brain net-
work connectivity. Third, genes explaining atypical connectivity  
were enriched for protein translation gene sets only in subgroup 1, 
including ribosomal gene sets, which have been implicated in ASD65–67. 
Importantly, we also found that gene set enrichment results in the 
cross-validation analyses were highly similar to results from the full 
dataset analysis (Supplementary Fig. 24), lending further confidence 
in the findings.

For additional validation, we repeated the PLS and GSEA in a 
separate gene expression dataset, the BrainSpan Atlas of the Devel-
oping Human Brain29 (N = 13 individuals (7 males), aged 8–40 years;  
Methods). Overall, we observed highly similar results across the two 
gene expression datasets (Extended Data Fig. 8), providing evidence 
that our gene set enrichment results for the ASD clusters generalize 
across a developmental age range that recapitulates the age range of 
our neuroimaging samples. Finally, to better understand the relation-
ship between atypical connectivity, gene expression and ASD symp-
toms, we conducted secondary analyses using data from the remainder 
of the ASD sample, that is, participants with usable fMRI data who  
were excluded from our primary analyses due to incomplete behav-
ioral assessments. We tested for and found associations between  

verbal IQ, social affect and RRB symptoms that resembled  
those observed in the four subgroups defined above (Extended Data 
Fig. 9). Together, these analyses provide converging evidence for  
associations between atypical connectivity, ASD symptom domains 
and specific gene sets.

Subgroup-specific protein–protein interactions linked to 
autism spectrum disorder behaviors
To conclude, we investigated the relationship between the gene 
sets identified by the PLS regression models in Fig. 5 and the 
subgroup-specific symptom profiles identified in Figs. 3 and 4, as a 
means of further validating the results. We hypothesized that if the 
highly ranked genes in each subgroup-specific gene set played an 
important role in modulating pathophysiological connectivity and 
ASD-related behavior, then an analysis of protein–protein interactions 
(PPIs) derived from each gene set would reveal molecular signaling 
pathways that are particularly relevant in each subgroup; are enriched 
for ASD risk genes; and have been associated with subgroup-specific, 
ASD-related behaviors in previous studies.

To test these predictions, we first identified highly ranked genes 
that were at least modestly associated with atypical connectivity in each 
subgroup (P < 0.01) and differentiated genes shared by all four sub-
groups versus genes associated specifically with one or two subgroups 
(Fig. 6 and Methods). We next performed a graph-based network analy-
sis using the STRING PPI database and identified the zero-order PPI 
(fully-connected graph between seed connectivity-related genes) 
for each subgroup (Fig. 6b–e, Supplementary Table 5 and Methods) 
and for the overlap between subgroups (Extended Data Fig. 10). The 
connectivity-related PPI of each subgroup identified numerous hub 
genes and functional modules (Fig. 6b–e). Notably, the PPI results for 
subgroup 1 consisted of only a single module related to protein synthe-
sis and multiple ribosomal genes (Fig. 6b). The results for subgroups 
2–4 contained multiple significant functional modules (Fig. 6c–e), 
associated with G-protein-coupled receptor signaling (subgroups 2–4), 
potassium channels (subgroup 2), synapse function and signal trans-
duction (subgroup 3) and gastrin–CREB signaling (subgroups 2 and 4). 
Of note, the results also include multiple hub genes that are known to be 
transcriptionally altered in ASD, as well as numerous GWAS-confirmed 
ASD risk genes, lending further confidence in the results.

Finally, to implement a more conclusive, unbiased validation of 
the association between the subgroup-specific PPI networks and the 
ASD-related symptoms and behaviors associated with each subgroup, 
we performed a text mining analysis68 of biomedical abstracts from the 
PubMed/MEDLINE database. We tested for associations between the 
most connected genes in each PPI network (‘hub genes’) and behavio-
ral keywords related to social affect and RRB symptom domains (see  
schematic in Supplementary Fig. 25, Supplementary Table 6 and  
Methods). We found that the frequency of RRB-related keywords 

Fig. 6 | Protein–protein interaction networks reveal distinct connectivity-
related genes with textual associations to autism spectrum disorder-related 
behaviors. a, Heat map of overlap between genes (y axis) significantly associated 
with each subgroup’s atypical connectivity (P < 0.01; Methods). Some genes 
were significantly associated with all four subgroups (red), while others were 
associated with just one, two or three subgroups (yellow, pale orange or orange). 
b–e, Zero-order PPI networks for genes associated with each subgroup and no 
more than one other subgroup (STRING database; Methods). b, Subgroup 1’s 
interactome was associated with protein synthesis-related genes (dashed line 
around genes). c–e, Subgroups 2–4 had multiple significant functional modules 
as determined by the Walktrap algorithm (Supplementary Table 5), delineated 
by colored lines around each module, and implicating G-protein-coupled 
receptor signaling (subgroups 2–4), transforming growth factor-beta (TGF-β) 
signaling (subgroup 2), synapse function and signal transduction (subgroup 3) 
and gastrin–CREB signaling (subgroup 4), among others. The significance of 
each PPI module is the two-sample Wilcoxon rank-sum test (unpaired, two-sided) 

of within-module degrees versus cross-module degrees (no adjustments for 
multiple comparisons of modules). For each gene in the module, the within-
module degree is the number of connected genes within the module and the 
cross-module degree is the number of connected genes outside the module.  
f, Nested bar graph of relative frequency (for each subgroup, number of keyword-
associated abstracts divided by total number of abstracts) of PubMed abstract 
associations between subgroup-specific hub genes (up to ten top-connected 
genes in subgroup PPI) and behavioral keywords. Radar charts (right) show 
relative distribution of clinical symptom severity between subgroups (Fig. 3b–e). 
Subgroup 4 (severe RRB, mild social affect) connectivity-associated hub genes 
were most strongly associated with RRB-related keywords (RRB-related terms for 
S4 = 80.85%). Subgroups 1–3 showed the opposite relationship (social affect-
related terms are S1 = 75.00%, S2 = 74.71% and S3 = 84.35%). Keywords are defined 
in Supplementary Table 6. In g, ‘*immune response transduction’ abbreviates the 
‘immune response-activating signal transduction’ gene set and in h, ‘*ribosomal 
structure’ abbreviates the ‘structural constituent of ribosome’ gene set.
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relative to social affect-related keywords was much higher for genes 
associated with subgroup 4 (80.85%), which had severe RRB symptoms 
and minimal social affect impairment (Fig. 6f). In contrast, the opposite 
relationship was found for genes associated with subgroup 3 (84.35%), 
which had minimal RRB symptoms and severe social affect impairment, 

providing an important unbiased validation of this approach to link-
ing functional connectivity, genes and behavior. In summary, these 
analyses reveal multiple testable hypotheses implicating ASD-related 
genetic pathways in modulating the functional organization of specific 
brain networks and behaviors—hypotheses that are plausible in the 
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context of the existing literature and implicate specific pathways in 
specific subsets of individuals. They also provide further validation 
that the ASD subgroups identified in Figs. 3–5 represent distinct forms 
of ASD associated with distinct biological processes.

Discussion
We identified and cross-validated a low-dimensional description of  
ASD that can disambiguate individual differences in patterns of  
functional connectivity and clinical behaviors and identify clini-
cally meaningful subgroups. These brain–behavior dimensions and 
the associated ASD subgroups were stable across different subsets 
of participants, reproducible in held-out test data, and replicated 
in out-of-sample ASD participants from the NDA (Extended Data  
Fig. 7 and Supplementary Fig. 21), demonstrating the robustness of 
the latent model of ASD and generalizability of the subgroups. These 
putative ASD subtypes were associated with distinct gene expression 
patterns and biological processes, many of which have previously been 
implicated in ASD at the group level.

Our limited understanding of the neural substrates underlying 
ASD heterogeneity has impeded the development of therapeutic 
interventions. Our approach to subtyping individuals with ASD sug-
gests testable hypotheses about how different biochemical, genetic 
and cellular processes may shape distinct clinical phenotypes and 
functional connectivity in ASD. Interestingly, two subgroups (1 and 2) 
separated primarily along one connectivity-related dimension (that is, 
the verbal intelligence quotient (VIQ)-related dimension 1). While both 
subgroups were highly impaired for core ASD symptoms, they differed 
in verbal intellectual ability, atypical connectivity and gene expression 
associations. The high-VIQ subgroup 1 was associated with decreased 
atypical connectivity between cerebellar-to-visual network regions of 
interest (ROIs) and somatomotor-to-prefrontal network ROIs, and our 
analyses highlight a correlation between atypical connectivity and gene 
sets involved in protein translation in this subgroup. In contrast, sub-
group 2 (with low VIQ) showed atypically strengthened visual network 
and corticothalamic connectivity and was not correlated with protein 
translation gene sets. These results suggest the testable hypothesis 
that in at least some individuals, decreased connectivity in these net-
works and abnormal expression of protein translation genes might 
be neurobiological substrates of ASD symptoms in the setting of high 
VIQ but not low VIQ. These results are consistent with findings linking 
cerebellar connectivity to verbal IQ41; prefrontal networks to semantic 
processing69; corticothalamic connectivity to visual-auditory predic-
tive coding70 impairments in ASD71,72; atypically increased corticotha-
lamic connectivity to impaired verbal cognition in premature-born 
infants73 (a risk factor for ASD74); and ribosomal genes to intellectual 
disability in ASD66.

The other subgroups (3 and 4) had average verbal intellectual 
ability but differed in the ratio of impairment in the two core ASD symp-
toms—social affect and RRB symptoms—consistent with reports of 
imbalances in symptom severity in these two domains in some individu-
als with ASD75–77. In subgroup 3 (with social affect > RRB symptoms), we 
observed atypically strengthened connectivity between the visual and 
salience networks, and our analyses implicated immune-related gene 
sets—consistent with previous reports implicating these regions in 
reward processing in ASD78. In contrast, in subgroup 4 (with RRB > social 
affect symptoms), we observed atypically weakened connectivity 
between these networks, and our analyses implicated serotonergic 
hub genes—consistent with known associations between serotonin 
and RRBs in ASD79,80. These results suggest that the hypothesis that 
in at least some individuals, atypical visual-to-salience network con-
nectivity, immune-related gene sets and serotonergic genes might 
be neurobiological substrates of ASD symptoms subserving social 
affect and RRB symptoms (with atypical connectivity in overlap-
ping networks but with opposing changes in connectivity defining  
different subgroups).

A text mining analysis of hub genes associated with subgroup- 
specific patterns of atypical connectivity provided additional sup-
port for these associations. This is useful because our genomic 
and proteomic analyses identified genes associated with a sub-
group using only the subgroup’s atypical connectivity, and thus did 
not directly measure associations between subgroup-associated 
genes and behavior. Our text mining analysis therefore serves as a 
bridge for this gene-to-behavior inference. For example, subgroup 
3’s connectivity-predictive genes were frequently associated with 
social affect-related keywords in published biomedical abstracts 
(84.35%, relative to RRB-related keywords). In contrast, subgroup 
4’s connectivity-predictive genes were frequently associated with 
RRB-related keywords (80.85%, relative to social affect-related 
keywords).

The ASD subgroups identified here provide insight into the  
biological mechanisms that may regulate changes in brain function 
that lead to ASD behaviors, and identify multiple testable hypotheses 
that could be explored in future studies. For example, in subgroup 4 
(high RRB and low social affect), atypical connectivity was linked to 
decreased expression of HTR1A, a gene encoding a serotonin receptor 
associated with severe repetitive behaviors and restricted interests. 
HTR1A expression is known to be downregulated in ASD81 and is associ-
ated with stress and anxiety82, and dysfunctional serotonin signaling 
has been implicated in altered reward processing83,84 and sensorimotor 
impairments during development85 that contribute to RRBs. Of note, 
atypical functional connectivity compared to typical controls is associ-
ated with higher RRB scores86 and drugs that target serotonin signaling 
may be beneficial for reducing RRBs in some individuals with ASD79,80. 
In a Shank3 mouse model of ASD, tandospirone reduced repetitive 
self-grooming and learning deficit80.

Our study has several limitations. First, it is limited by the datasets 
available. The ABIDE I and II cohorts were collected at 36 research 
sites that utilized different MRI scanners and scanning protocols. 
Clinical phenotyping data, including both verbal IQ and ADOS-2 scale 
scores, were limited to a subset of the ASD participants, and participant- 
level genotypes were not accessible in the publicly available ABIDE 
datasets. To address these potential confounds, we implemented a 
stringent protocol to remove head motion and scanner-related artifacts  
based on best practices and control for site effects by interquartile  
normalization of each individual’s functional connectivity  
matrix. At least one recent report suggests that accounting for  
individual differences in functional topology might further enhance 
the performance of our models87.

Second, we found that unexpectedly, the relatively small sample 
size available in NDA was sufficient to implement feature selection, 
RCCA and clustering and yield similar clustering results. However, a 
sample of this size is not sufficient to identify atypical connectivity 
patterns associated with each cluster (with just 17 to 27 participants 
per cluster), especially in a whole-brain analysis. Instead, in our analysis 
of atypical connectivity compared to neurotypical control partici-
pants, we were able to identify similarities to the results derived from 
the ABIDE sample by: (1) leveraging a very large neurotypical control 
sample for contrast (N = 907 participants); (2) identifying qualitative 
convergences by focusing on RSFC features that were shown to be 
significantly altered in the ABIDE sample; and (3) confirming that 
atypical connectivity patterns associated with the NDA subgroups were 
significantly more similar to the ABIDE subgroups than expected by 
chance. We also note that the feature selection, RCCA and clustering 
results in the NDA sample represent a fully independent replication of 
the corresponding analyses in the ABIDE sample, but the comparison 
of RSFC in the NDA subgroups versus neurotypical controls is not 
fully independent because they both relied on the same neurotypical 
control sample.

Third, although we did not find evidence of developmental dif-
ferences within or across cluster, it should be noted that this dataset 
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is not optimal for evaluating developmental differences for multiple 
reasons, including that verbal IQ is inversely correlated with age in 
this ABIDE dataset, and thus it would be challenging to parse results 
if we did observe differences. Also, our observation that there was no 
measurable developmental heterogeneity in the particular functional 
connectivity features that explained individual differences in ASD 
symptoms does not rule out the possibility of developmental changes 
in other functional connectivity features that were not important in 
our analysis. On the contrary, a large body of pioneering studies have 
characterized developmental effects on functional connectivity in 
both ASD and typically developing populations88–91.

Fourth, the AHBA microarray dataset we used contains brain-wide 
gene expression measurements for 3,702 brain region samples from 
the postmortem brains of only six healthy adults. Despite this limita-
tion, the statistical methods used in this study linking functional con-
nectivity differences to gene expression have previously been shown 
to be statistically robust27,55,56. The GSEAs in this study found that the 
genes whose expression predicted patterns of atypical connectiv-
ity were enriched for ASD gene sets, but not for unrelated diseases 
and that molecular enrichments differed between the four groups. 
While spatial autocorrelation can be a concern in spatial transcrip-
tome enrichment analyses92,93, we bootstrapped PLS gene weights over 
brain regions before ranking genes and implemented the weighted 
version of GSEA. The clear subgroup differences in gene set enrich-
ment patterns indicate spatial autocorrelation was not a major factor 
in enrichment findings (because spatial autocorrelation would be 
similar across subgroups). Furthermore, we replicated our findings 
using the developmental transcriptome from the BrainSpan Atlas of 
the Developing Human Brain, which contains gene expression measure-
ments from 26 brain regions of 42 individuals varying in age between 
8 postconceptional weeks and 40 years (although it has a missing data 
rate of ~52% among these individuals/brain region samples)29. Lending 
further confidence in our results, enrichment findings replicated in 
cross-validation analyses, and an analysis of PubMed abstracts sup-
ported phenotypic differences between subgroups, together enhanc-
ing confidence that these associations were not artifactual92. Finally, 
there was a large age range in the dataset used in this study (ages 5–65 
years, although >72% of participants spanned a narrower range of 8–16 
years and >81% spanned the narrower range of 8–18 years). Repeating 
key analyses in the smaller sample limited to ages 8–18 years showed 
results consistent with the main analyses (Supplementary Figs. 5, 13 
and 14 and Extended Data Fig. 5). To minimize the impact of age-related 
heterogeneity, we converted ADOS-2 scores to the CSS, which con-
trol for age effects and differences in verbal ability. We chose not to 
regress out the effect of age on RSFC, because there may be multiplicity 
between age effects and functional connectivity relevant to ASD, and 
thus regressing out age could remove biological information relevant 
to ASD. Importantly, the subgroups we identified did not differ substan-
tially by age (median ages differed by 2 years or less; Supplementary 
Fig. 8g), indicating that age was not a driving factor of the observed 
subgroup differences.

In summary, we identified four subgroups within the autism spec-
trum that may represent distinct functional connectome phenotypes 
in which genotype manifests as intermediate phenotypes of atypical 
brain function that give rise to the clinical heterogeneity of the behav-
ioral manifestations of autism. Our dimensional and subgroup results 
provide testable hypotheses that could be assessed in animal models 
and future clinical studies. They suggest distinct alterations in brain 
function that could be targeted using circuit-based neuromodula-
tion, and they predict distinct biological pathways that could help 
inform studies of pharmacotherapeutic targets specific to each ASD 
phenotype. Future efforts to test these hypotheses will benefit from 
prospective samples comprising larger cohorts of ASD individuals 
and neurotypical controls with deeper phenotyping and associated 
genomic data.
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Methods
Research protocols for the ABIDE and NDA datasets were approved by 
the Institutional Review Boards (or equivalent for international sites) at 
all sites as indicated in the original studies and consortium documen-
tation. Participants provided informed consent, received a small cash 
reward in some studies and all regulatory guidelines were followed as 
described in the original reports. Data collection and analysis followed 
the procedures outlined in the reports from the original studies and 
were not randomized or blinded for collection of resting-state neuro-
imaging data. No data points were excluded from the analyses following 
the initial study exclusion criteria as outlined in ‘Participants’. Of note, 
all results reported in our paper were from retrospective analyses of 
existing datasets, not prospectively designed experiments involving 
randomization and blinding. As such, no power analyses or other sta-
tistical methods were used to predetermine sample sizes.

Participants
Autism Brain Imaging Data Exchange. The ABIDE I and ABIDE II data-
sets contain 1,031 ASD participants and 1,139 neurotypical controls 
from 41 different scan sites. Following the study exclusion criteria, 
there were 299 ASD participants from 15 sites and 907 neurotypical 
controls from 35 sites for a total of 1,206 participants from 36 different 
sites. The 299 ASD participants had an age range of 5.13–34.76 years at 
time of the scan, a verbal IQ of 42–153, an ADOS-2 total severity CSS of 
2–10, an ADOS-2 social affect CSS of 1–10 and an ADOS-2 RRB CSS of 
1, 4–10. The neurotypical controls ranged from ages 5.89 to 64 years 
and had a verbal IQ of 67–156. In total, 782 ASD participants and 907 
typical control participants had functional connectivity matrices that 
passed the exclusion criteria; they had at least 180 s of time remain-
ing following rsfMRI scan preprocessing with motion censoring and 
had voxels with a temporal signal-to-noise ratio (TSNR) < 75 in all 247 
power ROIs used in the study. A total of 299 of the 782 ASD participants 
also had all the clinical measures used in this study: verbal IQ, ADOS-2 
total severity CSS, ADOS-2 social affect CSS and ADOS-2 RRB CSS. The 
ASD sample used in the analyses included N = 299 (aged 5–35 years); 
Nmale = 253 male (aged 5–27 years); Nfemale = 46 female (aged 5–35 years) 
and controls sample N = 907 (aged 5–64 years); Nmale = 688 male (aged 
5–64 years); Nfemale = 219 female (aged 5–47 years).

Imaging parameters and preprocessing. Because the participants 
were scanned at 36 different sites, imaging parameters varied between 
sites with repetition time (TR) values of 2, 2.5, 2.7 and 3 and scan dura-
tions of 190–580 s (for details, see refs. 10–11).We implemented pre-
processing steps to standardize data and increase the SNR including: 
(1) aligning all participants’ rsfMRI scans to standard space, (2) apply-
ing slice-timing correction, (3) removing scanner and physiological 
noise and (4) correcting for motion-induced artifacts. We preproc-
essed rsfMRI images using a custom pipeline with commands in the 
open-source processing environments, FMRIB Software Library (FSL, 
version 6.0) and Analysis of Functional NeuroImages (AFNI, version 
17.1.11)94,95. We extracted the voxels corresponding to brain tissue by 
creating a brain mask using FSL BET96 from the structural T1 scan, 
linearly registered rsfMRI data to structural scans using FSL FLIRT97,98, 
and applied the brain masks to the registered rsfMRI using FSL fslmaths 
with all non-brain voxels set to 0. Next, we registered the rsfMRI data 
to the standard anatomical Montreal Neurological Institute (MNI) of 
McGill University Health Centre atlas space99,100. First, we aligned the 
anatomical T1 scan to the anatomical MNI scan using linear (FSL FLIRT) 
and nonlinear (FSL FNIRT) registration101. We then applied the result-
ing transformation matrices with FSL applywarp to the rsfMRI data.

Next, we implemented standard denoising measures: (1) despiking 
(AFNI 3dDespike); (2) motion parameter estimation and correction (AFNI 
3dvolreg); (3) slice-timing correction (AFNI 3dTshift); (4) spatial smoothi 
ng (4-mm FWHM Gaussian kernel); (5) temporal bandpass filtering 
(0.01–0.1 Hz) AFNI 3dBandpass); (6) nuisance signal regression for  

12 motion parameters (AFNI 3dDeconvolve, 3dTproject) and (7) local 
and global hardware artifact removal using AFNI ANATICOR102.

Motion correction. We implemented stringent preprocessing to 
reduce motion artifacts that includes volume realignment and motion  
estimate regression (AFNI 3dvolreg). We removed high motion  
volumes (>0.3 mm framewise displacement due to head movement) 
and the volumes immediately preceding and following these volumes32. 
Following motion censoring, we selected participants with at least 
3 min of quality data, leaving remaining participants with scans ranging 
from 182.5 to 590 s in duration.

NIMH Data Archive out-of-sample dataset. From the NDA database 
(https://www.nimh.nih.gov/), we identified NNDA = 113 ASD participants 
with rsfMRI data and the same three clinical behaviors as used in our 
study (ADOS-2 social affect and RRB, which we converted to CSS and 
verbal IQ). From these 113 available participants, we identified NNDA = 85 
participants with usable rsfMRI data (after excluding scans with poor 
scan quality for example, <120 frames/180 s as with ABIDE). NNDA = 85 
participants were aged 8–39 years; Nmale = 58 male (aged 8–39 years) 
and Nfemale = 27 female (aged 8–18 years). We repeated all the main 
analyses using the NDA dataset (NNDA = 85 ASD participants), includ-
ing feature selection followed by RCCA and hierarchical clustering 
on RCCA-defined connectivity scores (brain–behavior dimensions/
canonical variates). We found that the ASD subgroups identified in 
the NDA dataset replicated the key findings for clinical symptoms, 
atypical connectivity and gene set enrichment in the ABIDE dataset 
(NABIDE = 299), providing evidence that the ASD subgroups we identi-
fied in the ABIDE dataset generalize to a new group of individuals with 
ASD (Extended Data Fig. 7 and Supplementary Fig. 21). Despite the 
smaller sample size, we found the behavioral distributions and atypi-
cal connectivity patterns in the NDA ASD clusters were highly similar 
to the ABIDE. Atypical connectivity was more similar than expected by 
chance when we compare to atypical connectivity measured using the 
same cluster sizes as NDA, but with random subsets of NDA participants  
not assigned to a given cluster (Supplementary Fig. 21i–l).

Feature extraction and functional connectivity measurement. To 
extract RSFC measurements from the preprocessed rsfMRI scans, we 
implemented dimensionality reduction by parcellating the brain into 
277 functionally defined spherical ROIs from the Power atlas, extracting 
the residual BOLD time series from these regions, and then correlating 
the BOLD signal between each region and every other region using 
AFNI 3dNetCorr, excluding voxels with low TSNR < 75 (ref. 103). ROIs 
that were missing for ten or more of the remaining ASD participants 
due to poor coverage or high TSNR signal were excluded from the 
study, resulting in 247 ROIs included in all subsequent analyses. Each 
participant’s 247 × 247 RSFC matrix was standardized by subtracting 
the median connectivity value and dividing by the interquartile range, 
the difference between the 75th and the 25th percentiles of the matrix 
of connectivity values. Before the calculation, NaN values were set to 0.

Feature selection and dimensionality reduction
Statistical clustering methods often work best when they are performed 
on a low-dimensional feature space involving a relatively small number  
of features that are relevant to the desired clustering outcome. As 
described below, we implemented additional steps to (1) select a sub-
set of connectivity features that are important in ASD and (2) define a 
low-dimensional representation of those connectivity features, while 
taking precautions to avoid overfitting due to the variable selection step.

Robust feature selection. To determine the strength and direction 
of the monotonic relationship between the clinical symptoms and 
functional connectivity measures, we used the Spearman correlation 
between the three normalized (z-score) clinical measures and the 
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247 × 247 functional connectivity (interquartile range-normalized) 
features. In 100 replicates, we subsampled 95% (N = 284) of partici-
pants and measured the Spearman correlation between the 30,3081 
unique connectivity features and the three clinical symptoms. RSFC 
features were then ranked by the number of replicates in which they 
had significant correlations, yielding a robust rank list of important 
RSFC features in ASD.

Regularized canonical correlation analysis. We ranked these RSFC 
features by how frequently they were selected as statistically significant 
in the robust feature selection step, and used this rank list as input into 
RCCA to estimate sets of linear combinations of connectivity features 
that best relate to linear combinations of ASD-related clinical symp-
toms. We used three behavioral measures from the ABIDE datasets: VIQ 
and the ADOS-2 subscale measures, social affect and RRB. To remove 
the effects of age and verbal ability, we standardized the ADOS-2 scores 
by converting them to CSS using the established lookup tables104,105. 
We note that only four ASD participants of the 299 participants had 
an age of ≥ 20.

To avoid potential overfitting, we utilized L2 RCCA (with an L2 or 
‘ridge’ or ‘Tikhonov’ penalty) to handle multicollinearity in the input 
variable sets. We opted to utilize the ridge penalty and not the L1 or 
lasso penalty because, while L1 penalties yield sparse solutions that 
may aid interpretation, they are unstable when input variables are 
correlated106,107 and our goal was to increase stability. We note that L2 
regularization has a ‘shrinkage’ effect, biasing CCA coefficients towards 
zero; however, we are not concerned with this particular source of bias 
as these are input into our clustering algorithm rather than interpreting 
their estimated magnitudes (and regularization improves categorical 
predictions like classification and clustering108,109).

We performed RCCA using the ranked RSFC features list and 
the three behavioral measures. We split the dataset (N = 299) into 30 
RCCA-training (N = 284)/RCCA-validation sets (N = 15) and for each 
RCCA-training set performed robust feature selection with 20 repli-
cates followed by an RCCA parameter grid search. For each parameter 
combination, we applied the RCCA-training set canonical equations to 
the held-out RCCA-validation set and calculated the held-out canonical 
correlation. We calculated the mean held-out canonical correlation 
values across the 30 replicates and chose the parameters that maxi-
mized the mean held-out canonical correlation. An L2-penalty (λ) was 
set for both variable sets (RSFC features as X and clinical measures as Y).  
After an initial course grid search, we settled on a hyperparameter 
grid of λX = [1,2,3,4,5] and λY = [0.001,0.01]. To determine the optimal 
number of features (Nfeatures) to include in the RCCA, we repeated this 
grid search on the 100 to 400 top-ranked features increasing by groups 
of 10. After identifying the optimal hyperparameter triplet (λX, λY and 
Nfeatures), we performed feature selection with 100 replicates and RCCA 
with these parameters in the full dataset (N = 299). The RSFC features 
and RCCA parameters for the 1,000 training sets were recalculated 
and optimized separately in each training set, so as not to bias the 
cross-validation results. The median RCCA parameters over the 1,000 
training set replicates were λX = 5, λY = 0.001 and Nfeatures = 340, and 
the RCCA parameters from the full dataset analysis (N = 299) were  
λX = 1, λY = 0.001 and Nfeatures = 280. This yielded three canonical variate 
pairs (connectivity scores and behavior scores) with values for all 299 
ASD participants and a canonical correlation for each variate pair.  
We calculated the Pearson correlation between the three behavior 
scores and the clinical symptoms as well as the Pearson correlation 
between the connectivity scores and functional connectivity followed 
by FDR correction.

RCCA cross-validation analyses. To evaluate reproducibility, we 
tested whether the brain–behavior dimensions calculated using the 
training sets generalized to test set data that was completely held 
out from feature selection and RCCA fitting in 1,000 training/test 

set replicates. We split the 299 ASD participants into 1,000 random 
training set (N = 284) and test set (N = 15) replicates (see schematic in 
Supplementary Fig. 2). For bootstrapped feature selection and RCCA 
parameter optimization, each training set was further split into 30 
RCCA-training (N = 269) and RCCA-validation (N = 15) sets with 20 
replicates for robust feature selection in each RCCA-training set. As 
described above, each RCCA-validation set was held out from feature 
selection and RCCA fitting along the parameter grid. Robust feature 
selection was repeated in each full training set and the optimal hyper-
parameter triplet was used to fit RCCA. Next, in each replicate, the 
training set RCCA coefficients were applied to the completely held-out 
test set data yielding test set canonical correlations used to calculate 
the significance of each brain–behavior dimension. We identified 
three brain–behavior dimensions measured in each training set that 
were significant in held-out test data. Both the training set and test set 
connectivity scores (per subgroup; see clustering methods below) and 
both training set and test set correlations between connectivity scores 
and RSFC were also stable and consistent with analysis in the full dataset 
results (Supplementary Figs. 3, 4 and 11).

To assess the robustness of the brain–behavior dimensions in 
the cross-validation analysis, we calculated the correlation between 
the training set brain–behavior dimension scores and the behavior or 
connectivity data, and compared these with those calculated in the full 
dataset (Supplementary Figs. 3 and 4). These revealed the correlations 
of the brain–behavior dimensions to behavior and connectivity data 
were highly stable across training sets and to analysis performed in 
the full dataset using all 299 ASD participants. We also measured the 
stability of the brain–behavior dimensions between training sets by 
calculating the RV-coefficient (1 is perfect correlation) and cosine angle  
(0° is perfect correlation) between training sets. The connectivity 
scores and behavioral scores had high median RV-coefficients (0.9 
and 1)110 and low median cosine angles (21.3° and 1.2°) between the 
training sets and the corresponding participants when RCCA was cal-
culated in the full dataset. Together, these two validation approaches 
demonstrated the brain–behavior dimension scores were significant in 
held-out data and were stable across different subsets of participants.

Evaluating significance of brain–behavior dimensions in test set. 
Significance of canonical variates (brain–behavior dimensions) was 
calculated by comparing the canonical correlations on held-out test 
data to those obtained on row-permuted data. For each of the 1,000 
training/test set replicates, we further split the training set into a train-
ing and validation set (see schematic of RCCA cross-validation scheme 
in Supplementary Fig. 2), ran feature selection in this training set and 
chose hyperparameters using model performance on the validation 
set. Then, given the feature rank list and optimal model hyperparam-
eters from the training/validation sets, we followed a bootstrapped 
cross-validation approach suggested by de Torrenté & Hastie111 to 
generate robust ensemble estimates and an empirical null distribution 
to compare them against. This procedure bootstrapped the training set 
(N = 284 training participants with 1,000 bootstraps with replacement) 
and calculated the RCCA coefficients in each bootstrap training set for 
the optimal hyperparameters. These 1,000 sets of coefficients were 
then used to project the held-out test set 1,000 times, and the mean of 
these test set canonical correlations was taken as an ensemble estimate 
of test set canonical correlations. This ensemble estimate procedure 
was repeated for each of the 1,000 training set/test set replications, 
yielding a distribution of 1,000 robust ensemble estimates of test set 
canonical correlations111.

To generate paired null test statistics for these ensemble esti-
mates, we next calculated the ensemble test set canonical correlations 
using 1,000 row-permuted (‘shuffled’) training sets (using the same 
feature rank list and optimal hyperparameter triplet). For each of the 
1,000 training/test set replicates, we randomly permuted the behavior 
dataset row indices and then subsetted the dataset into permutation 
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training sets (N = 284) and test sets (N = 15). We then calculated the 
same 1,000 bootstrap estimates and their robust ensemble estimate for 
test set canonical correlation on the shuffled data111. In Supplementary  
Fig. 3a–c, we present both (a) the histogram of observed ensemble 
canonical correlations over 1,000 splits and (b) a paired histogram of 
1,000 shuffled ensemble results (‘empirical null distribution’ in gray). 
These paired observed and shuffled distributions use a paired Welch’s 
t-test to establish significance of the ensemble test set canonical vari-
ates (again using a corrected variance estimator designed to account 
for overlapping data across replicates37, and testing the one-sided 
alternative hypothesis that the mean difference between paired obser-
vations between the observed and permuted distributions was greater 
than 0). We also calculated the Cohen’s d value as an estimate of the 
effect size. All three brain–behavior dimensions were significant in 
the held-out test canonical correlations (Fig. 1g–i; variate 1: r = 0.269, 
P < 0.0001, d = 1.119; variate 2: r = 0.180, P = 0.0005, d = 0.771; and vari-
ate 3: r = 0.115, P = 0.0185, d = 0.484; r indicates mean test set canonical 
correlation, P indicates P value and d indicates Cohen’s d).

Hierarchical clustering and subgroup assignment
Next, we used these ASD-related RSFC components (termed connec-
tivity scores or canonical variates) to cluster the ASD participants 
into functionally distinct subgroups. First, we calculated the cosine 
similarity of the connectivity scores between the 299 ASD participants 
and used this cosine similarity matrix to hierarchically cluster partici-
pants using the average linkage. Next, we used six statistical heuristics 
to evaluate the goodness-of-fit performance for 2–10 clusters using 
cluster criterion values (Calinski Harabasz, mean Silhouette value, 
and Davies Bouldin; Supplementary Fig. 8a–c) and cluster stability 
measures (the Rand index and adjusted Rand index with leave-one-out; 
Supplementary Fig. 8d–f). The cluster heuristic metrics indicated a 
four-cluster solution was optimal and this yielded cluster assignments 
for the 299 individuals with ASD when clustering was performed in 
all participants. To enhance robustness of participant clustering, we 
also performed hierarchical clustering on the training set participants 
from each of the 1,000 training sets from the cross-validation analysis 
described above choosing the four-cluster solution in each training 
set. We took the mode of participant assignments to clusters across 
1,000 subsamples as an aggregate measure of the central tendency 
and used these robust cluster assignments for all subsequent analyses 
of ASD subgroups.

For cross-validation, we compared the results for the mode ASD 
subgroups from Figs. 3–6 to those when the ASD subgroups were 
calculated separately in the 1,000 training set cluster assignments 
(Extended Data Fig. 4 and Supplementary Fig. 24). Results for behavior 
scores across subgroups, atypical connectivity (Welch’s t-test between 
functional connectivity of ASD subgroup participants and neurotypi-
cal controls) and gene set enrichment (described below) were highly 
similar, increasing confidence in the mode ASD subgroup results shown 
in the main text.

In our primary analysis of group-level and subgroup-level atypical 
connectivity, we compared group-level or subgroup-level atypical con-
nectivity to all controls with usable neuroimaging data regardless of 
age (that is, N = 907 typical control participants with high-quality fMRI 
data; see ‘Participants’ for details). However, to rule out age confounds, 
we also performed a secondary analysis restricted to control par-
ticipants who were age matched to the ASD sample age range (N = 868 
TC participants, aged 5–35 years). We replicated all key findings of 
group-level and subgroup-level results with the age-matched controls 
(Supplementary Fig. 12), validating our primary analysis. Next, we 
replicated key findings of the ASD subgroups (by repeating the RCCA 
and clustering analyses) first in a narrower age-range sample (aged 
8–18 years) and second in a second brain parcellation (Craddock 200; 
ref. 49). We found the subgroup results for clinical symptoms/behav-
iors, atypical connectivity and gene expression were consistent with 

those for the main analyses presented in Figs. 3 and 4 (Extended Data 
Figs. 5 and 6 and Supplementary Figs. 13–16). Finally, we evaluated the 
impact of age on these ASD subgroups, and did not detect evidence of 
developmental heterogeneity within the brain–behavior associations 
of the ASD subgroups (Supplementary Figs. 17–20 and Supplementary 
Tables 1 and 2).

Allen Human Brain Atlas dataset
Participants and data collection. We used the AHBA28,112, which  
contains brain-wide microarray samples from 3,702 brain regions. 
The samples were collected from six neurotypical adult brains,  
sampling from both hemispheres in two brains and one hemisphere in 
the remaining four brains, and include T1 MRI data with MNI sample 
coordinates. RNA-sequencing (RNA-seq) data are also available for two 
of the brains involving 112 brain regions.

Preprocessing. Preprocessing of microarray data consisted of two 
steps: probe to gene assignment (step 1) and anatomical sample loca-
tion to Power ROI assignment (step 2). For step 1, we (a) reannotated 
probes to include updated Entrez ID assignments, (b) filtered out 
microarray probe expression that did not exceed background levels 
(due to nonspecific hybridization), (c) measured correspondence 
between microarray probe expression data and RNA-seq gene expres-
sion, (d) selected one probe per gene (the probe with expression most 
similar to RNA-seq expression with a threshold of at least 0.2 correla-
tion; removing unmapped/below threshold genes) and (e) standardiz-
ing gene symbols to the Hugo Gene Nomenclature Committee (HGNC) 
nomenclature. This resulted in 10,438 gene expression values for each 
of the microarray samples.

For step 2, for each AHBA participant, we assigned the microarray 
samples to the 247 functionally defined Power ROIs as follows: (a) by 
assigning microarray samples and Power ROIs to major anatomical  
parcels (left and right cortex, subcortex, cerebellum and brainstem); 
(b) for each anatomical parcel, measuring the Euclidean distance 
from the MRI coordinates of each microarray sample in the parcel to 
the centroid of each Power atlas ROI in that parcel; (c) based on this 
distance measure, assigning each microarray sample to the closest 
Power ROI within 15 mm (average distance of mapped sample to ROI 
was 4.84 ± 1.48 mm) and (d) averaging expression for each ROI over 
all assigned microarray samples for each gene. With this distance 
threshold, this resulted in 2,857 AHBA samples from the six brains 
assigned to 230 of the 247 ROIs used in subgroup discovery. Follow-
ing assignment, gene expression was standardized by the z-score of 
the log2 of each value. The result of microarray sample preprocessing 
and sample-to-ROI assignment was a 230-ROI by 10,438-gene matrix.

BrainSpan Atlas of the developing human brain developmental 
transcriptome (BrainSpan) dataset. We used the BrainSpan dataset29 
that contains RNA-seq expression data collected in 26 brain regions 
from postmortem brains of 42 individuals varying in age between 8 
postconceptional weeks and 40 years of age. There is a missing data rate 
of ~52% among these individuals/brain region samples, such that only 
a subset of the brain regions was sampled among different individuals. 
We first excluded BrainSpan participants <5 years of age because this 
does not overlap with the age range of ABIDE and most of those samples 
are from <1-year-old brains with markedly different brain anatomy. This 
resulted in gene expression measurements from 13 BrainSpan donors 
aged 8–40 years (N = 6 females aged 11–40 years; N = 7 males aged 8–37 
years), and these gene expression measurements spanned 16 distinct 
BrainSpan regions across the cortex, subcortex and cerebellum. We 
next mapped these BrainSpan brain structures onto the Power atlas 
by manually comparing the BrainSpan brain region labels to ROIs; 
that is, we upsampled to the Power atlas by assigning gene expres-
sion from BrainSpan samples to the Power ROIs (for example, Power  
amygdala ROIs were assigned BrainSpan amygdala gene expression). 
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This mapping of BrainSpan onto the Power atlas resulted in 15/16 Brain-
Span brain regions mapped onto 106/230 Power atlas from our PLS 
analysis (that is, 1/16 BrainSpan brain region was not sampled by the 
Power atlas and 124/230 Power atlas ROIs were not sampled by Brain-
Span). We only included BrainSpan expression for the 9,648 genes that 
overlapped with the 10,438 genes from the AHBA PLS analyses. Thus, 
the input gene expression matrix (X) in the Brainspan PLS analysis was 
106 ROIs × 9,648 genes and the input net atypical RSFC vector (y) was 
a vector of length 106 ROIs. The X in BrainSpan was calculated as the 
average RNA-seq gene expression (z-score(log2(RPKM))) across the 13 
donors aged 8–40 years (N = 6 female aged 11–40 years, N = 7 male aged 
8–37 years). We next performed bootstrapped PLS and gene expression 
analysis following the procedure outlined for the AHBA atlas below. 
The results are depicted in Extended Data Fig. 8.

Identifying autism spectrum disorder subgroup-associated 
genes
Partial least squares regression models. To investigate whether 
brain-wide gene expression from the AHBA atlas predicts ASD-related 
changes in functional connectivity, we utilized PLS using the SIMPLS 
algorithm (MATLAB plsregress) with the 230 brain regions as samples, 
the predictors (X) as the 10,438 gene expression values across these 
samples, and one response variables (y): the net atypical connectivity 
(sum of positive atypical connectivity to each ROI minus the abso-
lute value of the sum of negative atypical connectivity to each ROI). 
Atypical connectivity was calculated as the t-test between the RSFC of  
ASD participants in each subgroup and neurotypical controls  
(Fig. 5a). This resulted in two input matrices: (1) X: 10,438 genes × 230 
brain regions and (2) y: atypical connectivity vector 1 × 230 brain 
regions (one per subgroup). A separate PLS model was calculated  
for each subgroup.

Each PLS model output two sets (one for X and one for y) of score 
vectors (230 samples × 1 component) and loading weights (10,438 gene 
weights × 1 component and 1 atypical connectivity sum weights × 1 
component) as well as the variance explained in X by y and in y by X. PLS 
score vectors are the weighted linear sum of the variables over all brain 
regions and loading weights are calculated to maximize the covariance 
between the two variable sets (here, gene expression and atypical con-
nectivity). We bootstrapped gene weights to reduce gene expression 
measures from a subset of brain samples dominating the model, and to 
increase generalization of the set of genes that significantly explained 
atypical connectivity when different combinations of brain regions 
are sampled. Each bootstrap sample contained, on average, 145 of the  
230 ROIs for AHBA (and 67 of the 106 ROIs for the BrainSpan replica-
tion analysis). For the gene loading weights, the magnitude indicates  
the relative importance of each gene’s expression to explaining  
atypical connectivity. We calculated the correlation between the PLS 
gene scores and net atypical connectivity. Thus, positively weighted 
genes were positively correlated with net atypical connectivity and 
negatively weighted genes negatively correlated with net atypical 
connectivity.

Gene weight stability, significance testing and overlap testing. To 
improve the stability of the PLS model predictions, we bootstrapped 
each model 100 times (without replacement) across different sets 
of ROIs and recalculated the gene expression loading weight vector 
output for each model by dividing by the standard deviation of the 
bootstrap distribution (this is similar to a z-test when the null hypoth-
esis is that the gene has a weight equal to 0). We ranked genes based 
on the bootstrapped PLS loading weight. We tested the significance 
of the first component of the PLS model by permuting the samples 
10,000 times, recalculating the PLS model, and comparing the actual 
variance explained by the PLS model to the permutation values. We 
implemented both a simple permutation test and a stricter, spatial 
permutation (‘spin’) test27,56 with a threshold of significance at P < 0.05. 

We compared gene weight similarity between the PLS models for the 
four subgroups using RBO of the top 1,000 positively weighted and  
top 1,000 negatively weighted genes, an indefinite rank similarity 
measure that handles non-conjoint ranking lists57.

Functional enrichment of candidate gene sets
Gene set lists. We extracted the following gene set lists from the cited 
articles and databases: Grove et. al, ASD common variants19, ASD cell 
types113, ASD transcriptionally upregulated (asdM16 from ref. 114) or 
downregulated (asdM12 from ref. 114) extracted from ref. 115, ASD rare 
de novo116, ASD SPARK117, FMRP-interacting118, intellectual disability 
(‘ID All’)119, vocal learning61, psoriasis120, Simons Foundation Autism 
Research Initiative (syndromic SFARI)121, Comparative Toxicogenom-
ics Database122 (schizophrenia), heart disease123, DISEASES database124 
(ADHD, antisocial personality disorder, aphasia, conduct disorder, 
generalized anxiety disorder, major depressive disorder, neurotic 
disorder and Tourette’s syndrome), RGD disease ontology125 (CNS 
autoimmune, dementia, osteoarthritis and multiple system atrophy) 
and the PANTHER 16.0 GO slim Gene Ontology database62,126,127.

Gene set enrichment analysis. Using the bootstrapped gene weight 
rank lists for each subgroup, we used the weighted fGSEA R package58 
to evaluate whether they were enriched for genes related to ASD, but 
not to unrelated diseases, and whether subgroup models differed in 
enrichment for Gene Ontology gene sets (molecular function, cellular 
components and biological processes). The fGSEA algorithm com-
pares the enrichment score of gene weights to a null distribution by 
permuting gene weight assignments. Genes are sorted by weight and 
then a running sum is calculated as the enrichment score and normal-
ized by the gene set size to obtain the normalized enrichment score. 
The algorithm finds the vertex point where the second derivative or 
rate of change of the first derivative (slope) of the enrichment score 
equals 0. This vertex is the position of maximum overlap between the 
ranked gene set and gene set of interest. Next the algorithm calculates 
the significance of enrichment by comparing the vertex enrichment 
score to the permuted null distribution. The P values were calculated 
by comparing normalized enrichment scores to the empirical null 
distribution, FDR-corrected using Benjamini–Hochberg correction 
and thresholded for FDR < 0.05.

Analysis of relationships between genetic variants, functional 
connectivity and behavior. We designed an analysis in which our goal 
was to assess the relationship between atypical connectivity, clinical 
symptoms/behaviors in ASD, and gene expression and to make use 
of more of the ASD sample that had usable RSFC data but incomplete 
behavioral assessments. N = 782 of the ASD sample had usable RSFC 
but incomplete behavior; however, NVIQ = 590 of these had VIQ (but 
not ADOS-2 social affect/RRB) measurements, while NADOS-2 = 353 had 
ADOS-2 measures of social affect and RRB (but not VIQ). To assess 
relationships between gene expression with atypical connectivity and 
behavior in larger usable samples, we split the NVIQ = 590 sample with 
VIQ into VIQ bins (participants with VIQ > 120, 85–120 or <85) and used 
PLS (in the same way as in the main analysis) to assess the relationship 
of these VIQ-binned participants’ atypical connectivity with gene 
expression. As subgroups 3 and 4 differed in the ratio of social affect 
to RRB, we also aimed to assess the relationship of social affect/RRB to 
atypical connectivity and gene expression. We split the NADOS-2 = 353 par-
ticipants with ADOS-2 assessment into bins of social affect > RRB and 
RRB > social affect and used PLS (as in the main analysis) to assess the 
relationship of these ADOS-2-binned participants’ atypical connectivity 
with gene expression. Our results revealed interesting relationships 
between atypical connectivity related to behavioral class and gene 
expression, consistent with our results in the subgroup-level PLS and 
GSEA that we outline further in the Results (Extended Data Fig. 9 and 
Supplementary Discussion).
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Protein–protein interaction network. We performed a graph-based 
gene network analysis in R with NetworkAnalyst128–130 using the set of 
genes that were strongly weighted in the PLS analysis for that subgroup 
and no more than one other subgroup (Fig. 6a). Strongly weighted 
genes were genes whose bootstrapped weight magnitude was greater 
than the distribution of null bootstrapped weight magnitudes from a 
permutation analysis in which the rows of atypical connectivity were 
shuffled (1,000 shuffles, using P < 0.01 without FDR correction as a 
heuristic threshold). Subgroup gene sets were next mapped to the 
STRING PPI database131, and a search algorithm identified proteins 
that directly interacted with candidate gene seeds (confidence score 
cutoff > 900 for STRING functional associations and physical associa-
tions from experimental data). The seeds and interaction partners were 
used to build a zero-order PPI subnetwork. We calculated the degree 
(number of connections) for each gene in the PPI networks and identi-
fied the overlap between genes in the PPI networks and genes known 
to be transcriptionally upregulated or downregulated in ASD114,115 or, 
if not transcriptionally regulated, then known to be an ASD risk gene 
in the SFARI database121,132 (Fig. 6b–e). The degree was used to plot the 
relative size of the gene node, and the gene overlap with ASD risk gene 
sets was used to color the nodes. Subgroup 2 was thresholded for nodes 
with a degree of 10 or greater due to PPI network size.

To identify molecular modules associated with ASD-related 
connectivity, we first calculated the zero-order PPI network using 
all subgroup-associated candidate genes that were associated with  
atypical functional connectivity patterns as the seed nodes. We  
next used the Walktrap algorithm to highlight the independent com-
ponents within the graph that likely represent distinct biological 
functional modules important to the ASD phenotype. We labeled 
the modules by colored lines surrounding each module along with a 
textual description of the biological property and the module signifi-
cance calculated by NetworkAnalyst (also see Supplementary Table 5  
for PPI module significance). The significance of each PPI module 
is the two-sample Wilcoxon rank-sum test (unpaired, two-sided) of 
within-module degrees versus cross-module degrees (no adjustments 
for multiple comparisons of modules). For each gene in the module, 
the within-module degree is the number of connected genes within 
the module and the cross-module degree is the number of connected 
genes outside the module.

Text mining analysis. To provide an additional, unbiased validation of 
the association between the subgroup-specific PPI networks and the 
ASD-related symptoms/behaviors associated with each subgroup, we 
performed a text mining analysis68,133–135 of biomedical abstracts from 
PubMed for associations between the most connected genes in each 
PPI (‘hub genes’) and behavioral keywords related to social affect and 
RRB symptom domains (see schematic in Supplementary Fig. 25). We 
asked whether the top genes in the PPI network (most interconnected) 
for each subgroup had known associations with behaviors that were 
related to the differing clinical behavioral patterns found in each ASD 
subgroup. In each subgroup’s PPI network, we identified genes with 
a degree of at least 1, and selected the top ten genes for the text min-
ing analysis (or all genes if less than ten had degree > 1, as occurred in 
subgroup 1, which had only seven genes exceeding this threshold). For 
each subgroup-specific gene set, the resulting subnetwork represents 
an atypical functional connectivity PPI network.

Taking these top hub genes for each subgroup, we identified hub 
gene-associated biomedical literature. We used the MeSH IDs corres
ponding to the hub genes to query the PubTator Central database of 
annotated biomedical entities136,137. We downloaded and tokenized the 
abstracts, standardized the token words; removed stop words using 
the ‘tm’ and ‘quanteda’ libraries in R138,139; and created a phenotypic 
keyword dictionary for social affect-related terms (verbal, commu-
nication, language, speech and social interaction) and RRB-related 
terms (attention deficits, repetitive or restricted behaviors/interests, 

compulsive, impulsive and obsessive behaviors, and self-harm/suicidal-
ity; Supplementary Table 6).

For each subgroup, we calculated the relative frequency of each 
keyword being included in MEDLINE/PubMed abstracts associated 
with the subgroup-specific hub gene set (or MeSH synonyms of these 
genes). Relative frequency was calculated separately for each subgroup 
as the number of abstracts containing the keyword divided by the total 
number of abstracts matched to any keyword in the dictionary. This 
resulted in a statistical measure of how associated each phenotypic 
keyword was to the hub genes in a subgroup relative to the other key-
words, and allowed us to test the hypothesis that the relative frequency 
of social affect-related terms as compared to repetitive behavior and 
restricted interest-related terms would align with the phenotypic 
composition of each subgroup. The text mining results supported the 
hypothesis that key subgroup-associated genes may lead to the distinct 
ASD-related behavioral phenotypes in the subgroups via interactions 
with the intermediate atypical functional brain connectivity patterns 
that define each ASD subgroup.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are publicly available. 
The neuroimaging datasets are available from ABIDE I and ABIDE II 
(https://fcon_1000.projects.nitrc.org/indi/abide/) and the the NDAR 
database (https://nda.nih.gov/). Users must register with the NITRC 
and 1000 Functional Connectomes Project to gain access to ABIDE 
I and ABIDE II. Users must be affiliated with a National Institutes of 
Health (NIH)-recognized research institution that maintains active 
Federalwide Assurance, be registered on NIH’s eRA Commons and 
complete and submit a Data Use Certification that is reviewed by the 
Data Access Committee to gain access to NDAR. The gene expression 
datasets are available from the AHBA (https://human.brain-map.org/
static/download) and BrainSpan (https://www.brainspan.org/static/
download.html).

Code availability
Code packages used are indicated in the Methods. Custom code for the 
RCCA is included in the Supplementary Information.
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Extended Data Fig. 1 | Connectivity score loadings on RSFC and atypical 
RSFC in 247 × 247 heatmaps. Heatmaps of 247 × 247 regions of interest (ROIs) 
corresponding to panels in Fig. 2 sorted and labeled by functional network. 
(a) Correlation between verbal IQ-related dimension (dimension 1) and RSFC 
(FDR < 0.05; see Fig. 2a). (b) Correlation between social affect-related dimension 

(dimension 2) and RSFC (FDR < 0.05; see Fig. 2b). (c) Correlation between RRB-
related dimension (dimension 3) and RSFC (FDR < 0.05; see Fig. 2c). (d) Atypical 
connectivity in ASD subjects versus controls (Welch’s t-test; FDR < 0.05; see Fig. 2d).  
Abbreviations described previously in Figs. 1–2.
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Extended Data Fig. 2 | Autism spectrum disorder subgroups replicate when 
using different clustering methods. (a, b) K-means clustering with cosine 
distance, (c, d) spectral clustering with cosine distance, and (e, f ) hierarchical 
clustering with Euclidean distance and Ward linkage across 1,000 training set 
replicates (N = 284). In (g, h) we show the original analysis using hierarchical 
clustering with cosine distance and average linkage (see Methods for more 
details). Boxplots show distribution of clinical symptom z-scores (superimposed 
bar graphs depict the median) for social affect, repetitive, restrictive behaviors 
and interests (RRB), verbal IQ, and total severity (color indicates subgroup). 

Plots include 284 subjects x 1,000 training sets to indicate distribution of 
clinical behaviors across all 1,000 training set cluster assignments. Box bounds: 
[25th,75th percentile]; center: median; whiskers: 99.3% data in + /–2.7 σ; outliers: 
circles). Heatmaps show patterns of mean atypical connectivity across replicates 
in each subgroup across brain regions (rows) and functional networks (columns), 
and were thresholded for significant atypical connectivity (two-sided Welch’s 
t-test, mean FDR < 0.05), evaluated relative to N = 907 neurotypical controls.  
See additional comparisons in Supplementary Fig. 9.

http://www.nature.com/natureneuroscience
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Extended Data Fig. 3 | Functional connectivity differences reveal subgroup-
specific atypical connectivity. Subgroups were defined as the modal subgroup 
assignment over the 1,000 training set replicates, which is used in the main 
text for Figs. 3–6. (a-d) Heatmaps show patterns of atypical connectivity in 
each subgroup across brain regions (rows) and functional networks (columns). 

Thresholded for significant atypical connectivity (two-sided Welch’s t-test, 
FDR < 0.05), evaluated in N = 69 ASD subjects in subgroup 1, N = 87 ASD subjects 
in subgroup 2, N = 67 ASD subjects in subgroup 3, N = 76 ASD subjects in subgroup 
4, relative to N = 907 neurotypical controls.

http://www.nature.com/natureneuroscience
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Extended Data Fig. 4 | Cross-validation of the clinical symptom and atypical 
connectivity differences between subgroups. To cross-validate the clinical 
symptom and atypical connectivity differences between subgroups in Figs. 3–4  
and Extended Data Fig. 3, we first subsampled 95% of the data in 1,000 replicates. 
Second, we calculated canonical variates (connectivity score and clinical score 
for each brain–behavior dimension) in each replicate. Third, in each replicate, 
we hierarchically clustered on connectivity scores using cosine similarity 
distance and average linkage and identified four subgroups. Fourth, we used 
the Hungarian method to match clusters between replicates (numerical 
assignment of subgroups can change without changing subject composition in 
cluster). Fifth, we calculated the distribution of clinical symptom z-scores for 
each subgroup across replicates. Sixth, in each replicate, we calculated atypical 
connectivity per subgroup versus N = 907 neurotypical controls (two-sided 
Welch’s t-test). Seventh, we calculated the mean and standard deviation (σ) of 

atypical connectivity (t) on RSFC over 1,000 subsampled replicates. (a-d) Note 
similarity to Fig. 3b-e: Subgroups differ with respect to clinical symptoms, similar 
to subgroup differences identified when subgroups were calculated as modal 
cluster assignment across 1,000 training sets (mode analysis) shown in Fig. 3b-e.  
Plots include 284 subjects x 1,000 training sets to indicate distribution of 
clinical behaviors across all 1,000 training set cluster assignments. Box bounds: 
[25th,75th percentile]; center: median; whiskers: 99.3% data in + /–2.7 σ; outliers: 
circles). (e-h) Heatmaps show patterns of mean atypical connectivity across 
replicates in each subgroup across brain regions (rows) and functional networks 
(columns), and were thresholded for significant atypical connectivity (two-sided 
Welch’s t-test, mean FDR < 0.05). (i-l) Heatmaps show patterns of the standard 
deviation of atypical connectivity across replicates in each subgroup across  
brain regions (rows) and functional networks (columns).

http://www.nature.com/natureneuroscience
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Extended Data Fig. 5 | RCCA and clustering analysis using narrower age 
range (ages 8–18) yields ASD subgroups with clinical symptoms and 
atypical connectivity consistent with main analysis. We repeated all the main 
analyses (shown in box, i-p) using a smaller age range, including only ASD and 
neurotypical individuals of ages 8–18 (shown in a-d and i-l). This reduced our ASD 
sample from N = 299 ages 5–35 to N = 243 ages 8–18 and reduced our neurotypical 
sample from N = 907 to N = 573. In this secondary analysis, we found similar 
clinical symptom profiles associated with each subgroup (a-d vs. i-l). Boxplots 
of the distribution of clinical symptom z-scores (superimposed bar graphs 
depict the median) for (a,e) social affect, (b,f ) repetitive, restrictive behaviors 
and interests (RRB), (c,g) verbal IQ, and (d,h) total severity (color indicates 
subgroup). Note that higher social affect, RRB, and total severity scores and 

lower verbal IQ indicate greater impairment. Box bounds: [25th,75th percentile]; 
center: median; whiskers: 99.3% data in + /–2.7 σ; outliers: circles). Next, we 
found similar atypical connectivity associated with each subtype (e-h vs. m-p). 
(e-h) Atypical connections that were significant (P < 0.05) in the narrower age 
range, thresholded for significant atypical connectivity (two-sided Welch’s 
t-test, FDR < 0.05). (m-p) Atypical connections that were significant (P < 0.05) 
in the full age range, thresholded for connections that were significant in the 
main analysis (two-sided Welch’s t-test, FDR < 0.05). Heatmaps show patterns 
of atypical connectivity in each subgroup across brain regions (rows) and 
functional networks (columns). Thresholded for significant atypical connectivity 
(two-sided Welch’s t-test, FDR < 0.05), evaluated relative to N = 907 neurotypical 
controls. For additional results, see Supplementary Figs. 13, 14 and 17–20.

http://www.nature.com/natureneuroscience


Nature Neuroscience

Article https://doi.org/10.1038/s41593-023-01259-x

Extended Data Fig. 6 | RCCA and clustering analysis using the Craddock 200 
atlas yields ASD subgroups with clinical symptoms and atypical connectivity 
consistent when analyzed using the Power atlas. We reparcellated the 
brains using the Craddock 200 atlas69, recalculated functional connectivity 
for each subject, and repeated the full analysis following the original pipeline 
(feature selection, RCCA, clustering, and PLS). Key findings from the primary 
analysis using the Power parcellation replicate in this secondary analysis using 
the Craddock atlas. Here we plot the clinical symptom scores (boxplots as in 
Extended Data Fig. 5) for each subgroup when (a-d) we used the Craddock 200 
parcellation for functional connectivity versus (i-l) the Power parcellation 
for functional connectivity (main text analysis). Next, we measured atypical 

connectivity using the Craddock parcellation and mapped it onto the Power 
atlas for visual comparison between the two parcellations. We plot the 
atypical connectivity for each subgroup for (e-h) the analysis in the Craddock 
200 parcellation thresholded the significant connections from the Power 
parcellation, and (m-p) the analysis in the Power atlas. Heatmaps show patterns 
of atypical connectivity in each subgroup across brain regions (rows) and 
functional networks (columns). Thresholded for significant atypical connectivity 
(two-sided Welch’s t-test, FDR < 0.05), each evaluated separately relative to 
N = 907 neurotypical controls. For additional results, see Supplementary  
Figs. 15, 16.
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Extended Data Fig. 7 | Out-of-sample replication of ASD subgroup clinical 
symptoms and atypical connectivity in NDA dataset (NNDA = 85 ASD 
subjects). We repeated the main analyses to define ASD subgroups using the NDA 
dataset (RCCA and clustering). This analysis replicated key results from ABIDE, 
such that the four NDA subgroups (NNDA_1 = 20, NNDA_2 = 21; NNDA_3 = 27; NNDA_4 = 17) 
exhibited clinical symptom / behavior profiles and atypical connectivity patterns 
that were highly similar to those observed in the ABIDE subgroups (NABIDE_1 = 69, 
NABIDE_2 = 87; NABIDE_3 = 67; NABIDE_4 = 76). In this summary figure, we plot the clinical 
symptom scores (NDA: a-d, ABIDE: i-l; boxplots as in Extended Data Fig. 5) 
and atypical connectivity patterns for each subgroup (NDA: e-h, ABIDE: m-p). 
As expected, statistical power to detect significant atypical connectivity was 
reduced due to the smaller sample size of NDA. Here, the heatmaps show atypical 

functional connectivity in NDA and ABIDE subgroups, with the NDA subgroups 
thresholded by significance from ABIDE for comparison (that is, we set elements 
in the NDA heatmaps with FDR < 0.05 from a connectivity (two-sided Welch’s 
t-test in ABIDE heatmaps to 0). However, we confirmed that compared to an 
empirical null (100 shuffles, see Methods for details), atypical connectivity 
patterns in the NDA ASD subgroups were more correlated with ABIDE ASD 
subgroups than expected by chance (P1 = 0.0099, P2 = 0.0297, P3 = 0.0099, 
P4 = 0.0198). Note that the P values correspond to the probability of obtaining 
the observed sum of ranks statistic (sum of observed ranks across a range of FDR 
thresholds, FDR in {1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005}) under 
the empirical null. For additional results, see Supplementary Fig. 21.
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Extended Data Fig. 8 | Replication of transcriptomic correlates of subgroup 
atypical connectivity using BrainSpan gene expression. We mapped data from 
the BrainSpan gene expression atlas to the Power atlas, and repeated the PLS 
and gene set enrichment analyses described in the main text. We found similar 
results to the original analysis in which we had used the AHBA gene expression 
dataset, including highly similar transcriptomic correlates of subgroup atypical 
connectivity. For the PLS analysis, we first calculated gene expression at each 
brain region (ROI) and atypical connectivity (RSFC) summed over ROIs for each 
subgroup. Second, we performed PLS regression for each subgroup. Third, we 
ranked genes by PLS gene weights in each model. The results were highly similar 

to those observed in the original analysis using the AHBA gene expression atlas. 
Heatmaps of gene set enrichment for each subgroup’s ranked gene weights for 
(a vs. b) ASD-related gene sets, (c vs. d) nonpsychiatric disease-related gene 
sets, (e vs. f ) psychiatric disorder-related gene sets, (g vs. h) synaptic signaling 
gene sets, (i vs. j) immune signaling gene sets, and (k vs. l) protein translation 
gene sets. All subgroups were enriched for ASD-related gene sets, but not for 
unrelated diseases. Color indicates strength of negative log transformed FDR for 
normalized enrichment score multiplied by sign of gene weight (+1 or −1). The  
P values were calculated and FDR-corrected as in Fig. 5.

http://www.nature.com/natureneuroscience
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Transcriptomic correlates of atypical connectivity 
patterns associated with ASD-related behaviors. To further assess 
relationships between gene expression with atypical connectivity and behavior 
in larger useable samples (that is, now including subjects with usable fMRI 
data who were excluded from primary analyses due to incomplete behavioral 
assessments) we started with the N = 782 subjects with usable scan data, and split 
the NVIQ = 590 subjects with VIQ into VIQ bins (ASD subjects with [NVIQ>120 = 127] 
VIQ > = 120, [N85≤VIQ≤120 = 383] VIQ 85–120, or [NVIQ<85 = 80] VIQ < = 85). We also 
split the NADOS-2 = 353 subjects with ADOS-2 assessment into bins by calculating 
social affect divided by RRB. The social affect > RRB bin (social affect / RRB > 1) 
had NSA>RRB = 113 ASD subjects and the RRB > social affect bin (social affect / 
RRB > 1) had NSA<RRB = 171 ASD subjects; the NSA=RRB = 69 ASD subjects with SA/
RRB = 1 were not included in either ADOS-2 bin. The overlap of subjects between 
the NVIQ = 590 subjects with VIQ and NADOS-2 = 353 subjects with ADOS-2 was the 

NVIQ;ADOS-2 = 299 ASD subjects in the main analysis. We used the same PLS and 
gene set enrichment procedure as in Fig. 5 (see b,d,f,h,j,l in box) to assess the 
relationship of these binned subjects’ atypical connectivity with gene expression. 
Heatmaps of gene set enrichment for each subgroup’s ranked gene weights 
for (a-b) ASD-related gene sets, (c-d) nonpsychiatric disease-related gene sets, 
(e-f ) psychiatric disorder-related gene sets, (g-h) synaptic signaling gene sets, 
(i-j) immune signaling gene sets, and (k-l) protein translation gene sets. Color 
indicates strength of negative log transformed FDR for normalized enrichment 
score multiplied by sign of gene weight (+1 or −1). The results were consistent 
with our predictions: gene set enrichments for the low-VIQ bin resembled those 
for subgroup 2 (featured low Verbal IQ) and enrichments for the high-VIQ bin 
resembled those for subgroup 1 (featured above-average VIQ). See further 
description of results in Supplementary Discussion. The P values were calculated 
and FDR-corrected as in Fig. 5.
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Extended Data Fig. 10 | Zero-order protein-protein interaction (PPI) 
networks for genes associated with multiple subgroups. Zero-order 
protein-protein interaction (PPI) networks for (a) genes associated with all four 
subgroups and (b) genes associated with at least 3 subgroups (STRING database; 
see Methods). Blue genes are known to be transcriptionally regulated in ASD 
while red genes are genes not known to be transcriptionally regulated but that 

have been associated with ASD in the SFARI database. The significance of each 
PPI module is the two-sample Wilcoxon rank sum test (unpaired, two-sided) 
of within-module degrees versus cross-module degrees (no adjustments for 
multiple comparisons of modules). For each gene in the module, the within-
module degree is the number of connected genes within the module and the 
cross-module degree is the number of connected genes outside of the module.

http://www.nature.com/natureneuroscience
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in 1,000 train-test replicates. We split the 299 ASD subjects into 1,000 random training (n = 284) and test set (n = 15) replicates (see 

schematic in Supplementary Fig. 2). For bootstrapped feature selection and RCCA parameter optimization, each training set was further split 
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of each training / test set replicate, robust feature selection was repeated in the full training set and the optimal hyperparameter triplet was 

used to fit RCCA. Next, in each replicate, the training set RCCA coefficients were applied to the completely held-out test set data yielding test 

set canonical correlation used to calculate the significance of each brain-behavior dimension (described in detail in the Methods). Our analysis 

identified three brain-behavior dimensions measured in each training set that were found to be significant in held-out test data. 
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clinical measures (ADOS-2 social affect and RRB, which we converted to calibrated severity scores, and verbal IQ) used in the ABIDE analysis. 

We repeated all key analyses in this new dataset and found that the ASD subgroups identified in the NDAR dataset replicated the key findings 

for clinical symptoms, atypical connectivity, and gene set enrichment in the ABIDE dataset (NABIDE = 299), providing evidence that the ASD 

subgroups we identified in the ABIDE dataset generalize to a new group ASD patients.
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Magnetic resonance imaging

Experimental design

Design type Resting state.

Design specifications All details for the 41 different scan sites can be found at the public dataset repository: http:// 

fcon_1000.projects.nitrc.org/indi/abide/.

Behavioral performance measures None.

Acquisition

Imaging type(s) Functional

Field strength 3T for all subjects

Sequence & imaging parameters All details for the 41 different scan sites can be found at the public dataset repository: http:// 

fcon_1000.projects.nitrc.org/indi/abide/.

Area of acquisition Whole-brain scan was used for all subjects.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software FSL version 6.0 and AFNI version 17.1.11. Specific functions and parameters used are defined below.

Normalization T1 anatomical volumes in the ABIDE samples were cropped to a smaller field of view (150 mm in z plane) using FSL’s 



4

n
atu

re p
o

rtfo
lio

  |  rep
o

rtin
g

 su
m

m
ary

M
a

rc
h

 2
0

2
1

Normalization automated robustfov tool. Brain extraction was then performed using FSL’s BET tool with robust brain centre estimation. The 

brain extracted T1 anatomical volumes were aligned to the 2 mm MNI atlas template using a rigid, 6-degrees-of-freedom 
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(DOF) FLIRT transformation. Next a non-linear transformation between the ACPC aligned T1-weighted anatomical image and 

MNI atlas (2 mm) was estimated using FNIRT. For each subject, functional data was brain extracted using FSL’s BET tool with 

robust brain centre estimation and the resulting brain mask was applied to all volumes using fslmaths. For each subject, the 

brain-extracted functional data were co-registered to the ACPC-aligned T1-weighted anatomical image using FSL’s FLIRT 

program and transformed into atlas space using applywarp with the non-linear transformation defined above in the T1 

anatomical data.

Normalization template 2 mm MNI atlas template (group standardized space).

Noise and artifact removal unctional data was denoised using AFNI toolbox (version 17.1.11; https://afni.nimh.nih.gov/). Denoising steps included 

linear de-trending and nuisance regression (5 principle components from eroded white matter and cerebrospinal fluid masks 

from the aforementioned tissue segmentation; 6 motion parameters and first-order temporal derivatives; and 

pointregressors 

to censor time points with mean frame-wise displacement > 0.3 mm). Residual time-series were band-pass filtered 

(0.01 Hz < f < 0.1 Hz) after regression to avoid reintroduction of nuisance-related variation in the time-series.

Volume censoring Temporal masks were created to flag motion-contaminated frames for scrubbing. High-motion volumes were identified by 

framewise displacement (FD) calculated as the sum of absolute values of the differentials of the three translational motion 

parameters and three rotational motion parameters. Motion was censored with a 0.3 mm threshold and volumes preceding 

high motion were also censored. More detail is provided in the Methods.

Statistical modeling & inference

Model type and settings N/A: general linear modeling was not used to make voxel- or cluster- based inferences. Resting state data was analyzed via 

group comparisons and with regularized canonical correlation analysis, described briefly below in "Multivariate modeling and 

predictive analysis" and described fully in the Methods section.

Effect(s) tested Effect of autism spectrum disorder on resting state functional connectivity was tested using two-tailed Welch’s t-tests, as 

described fully in the Methods section.

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s)
Voxels were parcellated into brain ROIs using the 247 regions from the Power parcellation. See Fig. 1b 

and Methods.

Statistic type for inference
(See Eklund et al. 2016)

N/A: resting-state data was used and voxels were grouped into pre-defined ROIs according to the previously published and 

validated Power parcellation. Mindful of concerns about false positives, we used FDR correction for reported test statistics, 

also described fully in the Methods and / or Figure Legends.

Correction Benjamini-Hochberg correction of the FDR was performed for all p-values resulting from ANOVA or t-test analyses, using the 

fdr_BH script from the Matlab toolbox ‘Multiple Testing Toolbox’ by Víctor Martínez-Cagigal available on the MathWorks File 

Exchange (https://www.mathworks.com/matlabcentral/fileexchange/70604-multiple-testing-toolbox).

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Fisher-Z-transformed Pearson correlations between regional BOLD time series were used to represent 

functional connectivity.

Multivariate modeling and predictive analysis We used two multivariate models in this study. 

1. Regularized Canonical Correlation Analysis: Full description in Methods. We performed L2-regularized CCA 

using Matlab code rewritten from the RCCA function in R mixOmics package (see attached files, RCCA.m, 

RCCA_instructions.txt, example_data.mat). Briefly, we performed robust feature selection using the 

Spearman correlation between the three normalized (z-score) clinical measures in 100 subsampled replicates 

and ranked rsFC by the number of replicates in which they had significant correlations. We used this rank list 

for hyperparameter grid search for RCCA to determine the optimal regularization parameters and number of 

features to include. Model performance was evaluated using a validated, robust null permutation approach 

for significance testing of CCA components, with test set data completely held out from feature selection, 

RCCA optimization, and RCCA calculation, as described in detail in the Methods. 

2. Partial least squares regression model: Full description in Methods. Briefly, we modeled atypical rsFC 

changes associated with autism spectrum disorder using brain regional gene expression of 10,438 genes as 

predictor variables. PLS-R modeling was performed using the plsregress function in Matlab. Feature 

extraction and dimension reduction was not performed. Model performance was evaluated using two 

validated null permutation approaches for significance testing of PLS-R components, described fully in the 

Methods.
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